Skip to main content

Advertisement

Log in

Facile Hydrothermal Procedure for the Synthesis of Sodium Aluminum Silicate Hydrate/Analcime and Analcime for Effective Removal of Manganese(II) Ions From Aqueous Solutions

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this research, sodium aluminum silicate hydrate/analcime composite (abbreviated as S/A) and analcime (abbreviated as A) products were fabricated utilizing the hydrothermal technique in the absence and presence of glutamine (concentration = 0.0435 g/mL) as phase-controlling template, respectively. Glutamine behaves as a crowning agent and avoids the accretion of particles. Hence, it controlled the morphology, aluminum silicate type, and crystallite size. The patterns of XRD elucidated that the S/A composite and A products exhibit a crystallite size equals 70.36 and 80.24 nm, respectively. Besides, the SEM elucidated that the S/A composite comprised of an irregular and sphere forms with a size of 2.64 µm whereas the A product comprised of a droxtal forms with a size of 7.84 µm. Furthermore, the fabricated products were exploited for removing Mn(II) ions from aqueous solutions. The uptake of Mn(II) ions was constrained by the pseudo-second-order model and Langmuir isotherm. Besides, the uptake of Mn(II) ions was exothermic since the estimations of ∆H° on account of S/A composite and A product were − 52.059 and − 58.878 kJ/mol, respectively. Additionally, the maximum uptake capacity of S/A composite and A product was 75.188 and 60.241 mg/g, respectively. The higher uptake of the S/A composite can be explained by the fact that the S/A composite has a small crystallite size (70.36 nm) and a high surface area (20.26 m2/g) compared to the A product. Furthermore, the fabricated products are returnable, stable, effective, and can be reutilized more than once without the concession of their efficacy regarding Mn(II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Visa, Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment. Powder Technol. 294, 338–347 (2016)

    Article  CAS  Google Scholar 

  2. S. Shafiof, A. Nezamzadeh-ejhieh, A comprehensive study on the removal of Cd(II) from aqueous solution on a novel pentetic acid-clinoptilolite nanoparticles adsorbent: experimental design, kinetic and thermodynamic aspects. Solid State Sci. 99, 106071 (2020)

    Article  CAS  Google Scholar 

  3. M. Naushad, G. Sharma, Z.A. Alothman, Photodegradation of toxic dye using Gum Arabic-crosslinked- poly ( acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel. J. Clean. Prod. 241, 118263 (2019)

    Article  CAS  Google Scholar 

  4. Z.N. Garba, I. Lawan, W. Zhou, M. Zhang, L. Wang, Z. Yuan, Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals—a review. Sci. Total Environ. 717, 135070 (2019)

    Article  Google Scholar 

  5. E. Nazarzadeh, A. Motahari, M. Sillanpää, Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ. Res. 162, 173–195 (2018)

    Article  Google Scholar 

  6. A. Talaiekhozani, S. Rezania, Application of photosynthetic bacteria for removal of heavy metals, macro- pollutants and dye from wastewater: a review. J. Water Process Eng. 19, 312–321 (2017)

    Article  Google Scholar 

  7. J. Lin, C. Huang, P. Jill, Y. Wang, Fouling mitigation of a dead-end microfiltration by mixing-enhanced preoxidation for Fe and Mn removal from groundwater. Colloids Surf. A Physicochem. Eng. Asp. 419, 87–93 (2013)

    Article  CAS  Google Scholar 

  8. N. Esfandiar, B. Nasernejad, T. Ebadi, Removal of Mn(II) from groundwater by sugarcane bagasse and activated carbon (a comparative study): application of response surface methodology (RSM ). J. Ind. Eng. Chem. 20, 3726–3736 (2014)

    Article  CAS  Google Scholar 

  9. Y. Zhang, Y. Zhang, X. Zheng, R. Xu, H. He, Grading and quantification of dental fluorosis in zebra fish larva. Arch. Oral Biol. 70, 16–23 (2016)

    Article  CAS  Google Scholar 

  10. M.R. Lasheen, N.S. Ammar, H.S. Ibrahim, Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: equilibrium and kinetic studies. Solid State Sci. 14, 202–210 (2012)

    Article  CAS  Google Scholar 

  11. F. Keyvani, S. Rahpeima, V. Javanbakht, Synthesis of EDTA-modified magnetic activated carbon nanocomposite for removal of permanganate from aqueous solutions. Solid State Sci. 83, 31–42 (2018)

    Article  CAS  Google Scholar 

  12. Z. Xia, L. Baird, N. Zimmerman, M. Yeager, Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers. Appl. Surf. Sci. 416, 565–573 (2017)

    Article  CAS  Google Scholar 

  13. S. Agarwal, I. Tyagi, V. Kumar, M.H. Dehghani, J. Jaafari, D. Balarak, M. Asif, Rapid removal of noxious nickel(II) using novel γ-alumina nanoparticles and multiwalled carbon nanotubes: kinetic and isotherm studies. J. Mol. Liq. 224, 618–623 (2016)

    Article  CAS  Google Scholar 

  14. W. Zhan, L. Gao, X. Fu, S. Hussain, G. Sui, X. Yang, Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal. Appl. Surf. Sci. 467–468, 1122–1133 (2019)

    Article  Google Scholar 

  15. E.A. Abdelrahman, R.M. Hegazey, Utilization of waste aluminum cans in the fabrication of hydroxysodalite nanoparticles and their chitosan biopolymer composites for the removal of Ni(II) and Pb(II) ions from aqueous solutions: kinetic, equilibrium, and reusability studies. Microchem. J. 145, 18–25 (2019)

    Article  CAS  Google Scholar 

  16. E.A. Abdelrahman, Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. J. Mol. Liq. 253, 72–82 (2018)

    Article  CAS  Google Scholar 

  17. E.A. Abdelrahman, D.A. Tolan, M.Y. Nassar, A tunable template-assisted hydrothermal synthesis of hydroxysodalite zeolite nanoparticles using various aliphatic organic acids for the removal of Zinc(II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. 29, 229–247 (2019)

    Article  CAS  Google Scholar 

  18. E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 280, 309–314 (2004)

    Article  CAS  Google Scholar 

  19. Y. Taamneh, S. Sharadqah, The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Appl. Water Sci. 7, 2021–2028 (2017)

    Article  CAS  Google Scholar 

  20. S. Mehdizadeh, S. Sadjadi, S.J. Ahmadi, M. Outokesh, Removal of heavy metals from aqueous solution using platinum nanopartcles/Zeolite-4A. J. Environ. Heal. Sci. Eng. 12, 1–7 (2014)

    Article  Google Scholar 

  21. M.G. Lee, G. Yi, B.J. Ahn, F. Roddick, Conversion of coal fly ash into zeolite and heavy metal removal characteristics of the products. Korean J. Chem. Eng. 17, 325–331 (2000)

    Article  CAS  Google Scholar 

  22. E.A. Abdelrahman, R.M. Hegazey, A. Alharbi, Facile synthesis of mordenite nanoparticles for efficient removal of Pb(II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-019-01238-5

    Article  Google Scholar 

  23. M.Y. Nassar, E.A. Abdelrahman, A.A. Aly, T.Y. Mohamed, A facile synthesis of mordenite zeolite nanostructures for efficient bleaching of crude soybean oil and removal of methylene blue dye from aqueous media. J. Mol. Liq. 248, 302–313 (2017)

    Article  CAS  Google Scholar 

  24. G. Engelhardt, S. Luger, JCh Buhl, J. Felsche, 29Si MAS n.m.r. of aluminosilicate sodalites: correlations between chemical shifts and structure parameters. Zeolites 9, 1–5 (1989)

    Article  Google Scholar 

  25. H.S. Jacobsen, P. Norby, H. Bildsøe, H.J. Jakobsen, 1:1 Correlation between 27Al and 29Si chemical shifts and correlations with lattice structures for some aluminosilicate sodalites. Zeolites 9, 491–495 (1989)

    Article  CAS  Google Scholar 

  26. R.M. Hegazey, E.A. Abdelrahman, Y.H. Kotp, A.M. Hameed, A. Subaihi, Facile fabrication of hematite nanoparticles from Egyptian insecticide cans for efficient photocatalytic degradation of rhodamine B dye. Integr. Med. Res. (2020). https://doi.org/10.1016/j.jmrt.2019.11.090

    Article  Google Scholar 

  27. E.A. Abdelrahman, R.M. Hegazey, R.E. El-Azabawy, Efficient removal of methylene blue dye from aqueous media using Fe/Si, Cr/Si, Ni/Si, and Zn/Si amorphous novel adsorbents. J. Mater. Res. Technol. 8, 5301–5313 (2019)

    Article  CAS  Google Scholar 

  28. A. Alharbi, E.A. Abdelrahman, Efficient photocatalytic degradation of malachite green dye using facilely synthesized hematite nanoparticles from Egyptian insecticide cans. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 226, 117612 (2020)

    Article  CAS  Google Scholar 

  29. E.A. Abdelrahman, R.M. Hegazey, Y.H. Kotp, A. Alharbi, Facile synthesis of Fe2O3 nanoparticles from Egyptian insecticide cans for efficient photocatalytic degradation of methylene blue and crystal violet dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 222, 117195 (2019)

    Article  CAS  Google Scholar 

  30. E.A. Abdelrahman, R.M. Hegazey, Exploitation of Egyptian insecticide cans in the fabrication of Si/Fe nanostructures and their chitosan polymer composites for the removal of Ni(II), Cu(II), and Zn(II) ions from aqueous solutions. Compos. Part B 166, 382–400 (2019)

    Article  CAS  Google Scholar 

  31. M.Y. Nassar, E.A. Abdelrahman, Hydrothermal tuning of the morphology and crystallite size of zeolite nanostructures for simultaneous adsorption and photocatalytic degradation of methylene blue dye. J. Mol. Liq. 242, 364–374 (2017)

    Article  CAS  Google Scholar 

  32. E.A. Abdelrahman, A. Subaihi, Application of geopolymers modified with chitosan as novel composites for efficient removal of Hg(II), Cd(II), and Pb(II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01380-0

    Article  Google Scholar 

  33. M.E. Khalifa, E.A. Abdelrahman, M.M. Hassanien, W.A. Ibrahim, Application of mesoporous silica nanoparticles modified with dibenzoylmethane as a novel composite for efficient removal of Cd(II), Hg(II), and Cu(II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01384-w

    Article  Google Scholar 

  34. I. Kara, D. Tunc, F. Sayin, S. Tunali, Study on the performance of metakaolin based geopolymer for Mn(II) and Co(II) removal. Appl. Clay Sci. 161, 184–193 (2018)

    Article  CAS  Google Scholar 

  35. A.A. Bakr, M.S. Mostafa, E.A. Sultan, Mn(II) removal from aqueous solutions by Co/Mo layered double hydroxide: kinetics and thermodynamics. Egypt. J. Pet. 25, 171–181 (2016)

    Article  Google Scholar 

  36. A. Uyanik, A. Uc, F. Ayg, Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Sep. Purif. Technol. 47, 113–118 (2006)

    Article  Google Scholar 

  37. K. Vijayaraghavan, H. Yun, N. Winnie, R. Balasubramanian, Biosorption characteristics of crab shell particles for the removal of manganese(II) and zinc(II) from aqueous solutions. DES. 266, 195–200 (2011)

    Article  CAS  Google Scholar 

  38. A. Omri, M. Benzina, Removal of manganese(II) ions from aqueous solutions by adsorption on activated carbon derived a new precursor : Ziziphus spina-christi seeds. Alexandria Eng. J. 51, 343–350 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deanship of Scientific Research, king Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hany M. Youssef.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest for this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, H.M., Shah, R.K., Algethami, F.K. et al. Facile Hydrothermal Procedure for the Synthesis of Sodium Aluminum Silicate Hydrate/Analcime and Analcime for Effective Removal of Manganese(II) Ions From Aqueous Solutions. J Inorg Organomet Polym 31, 1035–1046 (2021). https://doi.org/10.1007/s10904-020-01699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01699-z

Keywords

Navigation