Skip to main content
Log in

Blow-up profiles and life beyond blow-up in the fully parabolic Keller-Segel system

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The fully parabolic Keller-Segel system is considered in n-dimensional balls with n ≥ 2. Pointwise time-independent estimates are derived for arbitrary radially symmetric solutions. These are firstly used to assert that any radial classical solution which blows up in finite time possesses a uniquely determined blow-up profile which satisfies an associated pointwise upper inequality. Secondly, in conjunction with additional regularity features implied by a very weak but temporally and spatially global quasi-entropy property, these estimates are seen to ensure global extensibility of any such solution within a suitable framework of renormalized solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Bedrossian and N. Masmoudi, Existence, uniqueness and Lipschitz dependence for Patlak—Keller—Segel and Navier—Stokes in2with measure-valued initial data. Arch. Ration. Mech. Anal. 214 (2014), 717–801.

    Article  MathSciNet  Google Scholar 

  2. N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a Mathematical Theory of Keller—Segel Models of Pattern Formation in Biological Tissues, Math. Models Methods Appl. Sci. 25 (2015), 1663–1763.

    Article  MathSciNet  Google Scholar 

  3. N. Bellomo and M. Winkler, Finite-time blow-up in a degenerate Chemotaxis system with flux limitation, Trans. Amer. Math. Soc. Ser. B 4 (2017), 31–67.

    Article  MathSciNet  Google Scholar 

  4. P. Biler, Global solutions to some paraboliC-elliptiC systems of Chemotaxis, Adv. Math. Sci. Appl. 9 (1999), 347–359.

    MathSciNet  MATH  Google Scholar 

  5. X. Cao, Global bounded solutions of the higher-dimensional Keller—Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst. A 35 (2015), 1891–1904.

    Article  MathSciNet  Google Scholar 

  6. X. Cao, A refined extensibility criterion for the Keller—Segel system, preprint.

  7. T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller—Segel system in higher dimensions, J. Differential Equations 252 (2012), 5832–5851.

    Article  MathSciNet  Google Scholar 

  8. T. Cieslak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller—Segel and applications to volume filling models, J. Differential Equations 258 (2015), 2080–2113.

    Article  MathSciNet  Google Scholar 

  9. R.-J. Di Perna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Anal. of Math. (2) 130 (1989), 321–366.

    MathSciNet  Google Scholar 

  10. J. Dolbeault and C. Schmeiser, The two-dimensional Keller—Segel model after blow-up, Discrete Contin. Dyn. Syst. 25 (2009), 109–121.

    Article  MathSciNet  Google Scholar 

  11. K. Fujie, A. Ito, M. Winkler and T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst. A 36 (2016), 151–169.

    MathSciNet  MATH  Google Scholar 

  12. M. A. Herrero and J. J. L. Velászquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 24 (1997), 633–683.

    MathSciNet  MATH  Google Scholar 

  13. T. Hillen and K. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), 183–217.

    Article  MathSciNet  Google Scholar 

  14. D. Horstmann, From 1970 until present: The Keller—Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein. 105 (2003), 103–165.

    MathSciNet  MATH  Google Scholar 

  15. D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math. 12 (2001), 159–177.

    Article  MathSciNet  Google Scholar 

  16. D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 (2005), 52–107.

    Article  MathSciNet  Google Scholar 

  17. S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller—Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. B 18 (2013), 2569–2596.

    Article  MathSciNet  Google Scholar 

  18. W. Jager and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), 819–824.

    Article  MathSciNet  Google Scholar 

  19. E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability J. Theoret. Biol. 26 (1970), 399–415.

    Article  MathSciNet  Google Scholar 

  20. O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.

    Book  Google Scholar 

  21. Y. Li and Y. Li, Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species, Nonlinear Anal. 109 (2014), 72–84.

    Article  MathSciNet  Google Scholar 

  22. G. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing, River Edge, NJ, 1996.

    Book  Google Scholar 

  23. D. Liu, and Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chinese Univ. Ser. B 31 (2016), 379–388.

    Article  MathSciNet  Google Scholar 

  24. S. Luckhaus, Y. Sugiyama and J. J. L. Velázquez, Measure valued solutions of the 2D Keller—Segel system, Arch. Ration. Mech. Anal. 206 (2012), 31–80.

    Article  MathSciNet  Google Scholar 

  25. N. Mizoguchi and Ph. Souplet, Nondegeneracy of blow-up points for the parabolic Keller—Segel system, Ann. Inst. H. Poincaré Anal. NonLineaire 31 (2014), 851–875.

    Article  MathSciNet  Google Scholar 

  26. N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller—Segel system, preprint.

  27. T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl. 6 (2001), 37–55

    MathSciNet  MATH  Google Scholar 

  28. T. Nagai, T. Senba and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J. 30 (2000), 463–497.

    Article  MathSciNet  Google Scholar 

  29. T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger—Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac. 40 (1997), 411–433.

    MathSciNet  MATH  Google Scholar 

  30. K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac. 44 (2001), 441–469.

    MathSciNet  MATH  Google Scholar 

  31. M. M. Porzio and V. Vespri, Holder Estimates for Local Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations, J. Differential Eq. 103 (1993), 146–178.

    Article  Google Scholar 

  32. P. Raphael and R. Schweyer, On the stability of critical chemotactic aggregation, Math. Ann. 359 (2014), 267–377.

    Article  MathSciNet  Google Scholar 

  33. R. Schweyer, Stable blow-up dynamic for the parabolic-parabolic Patlak—Keller—Segel model, arXiv:1403.4975

  34. T. Senba and T. Suzuki, Local and norm behavior of blowup solutions to a parabolic system of chemotaxis, J. Korean Math.Soc. 37 (2000), 929–941.

    MathSciNet  MATH  Google Scholar 

  35. T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system ofchemotaxis, J. Funct. Anal. 191 (2002), 17–51.

    Article  MathSciNet  Google Scholar 

  36. Ph. Souplet and M. Winkler, Blow-up profiles for the parabolic-elliptic Keller—Segel system in dimensions n ≥ 3, Comm. Math. Phys., 367 (2019), 665–681.

    Article  MathSciNet  Google Scholar 

  37. Y. Tao, and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller—Segel system with subcritical sensitivity, J. Differential Equations 252 (2012), 692–715.

    Article  MathSciNet  Google Scholar 

  38. Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signalproduction, J. Eur. Math. Soc. (JEMS) 19 (2017), 3641–3678.

    Article  MathSciNet  Google Scholar 

  39. M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller—Segel model, J. Differential Equations 248 (2010), 2889–2905.

    Article  MathSciNet  Google Scholar 

  40. M. Winkler, Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33 (2010), 12–24.

    Article  MathSciNet  Google Scholar 

  41. M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller—Segel system, J. Math. Pures Appl. (9) 100 (2013), 748–767.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The author is very grateful to the anonymous reviewer for numerous helpful remarks. The author moreover acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Analysis of chemotactic cross-diffusion in complex frameworks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, M. Blow-up profiles and life beyond blow-up in the fully parabolic Keller-Segel system. JAMA 141, 585–624 (2020). https://doi.org/10.1007/s11854-020-0109-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0109-4

Navigation