Skip to main content
Log in

Planck-scale distribution of nodal length of arithmetic random waves

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the nodal length of random toral Laplace eigenfunctions (“arithmetic random waves”) restricted to decreasing domains (“shrinking balls”), all the way down to Planck scale. We find that, up to a natural scaling, for “generic” energies the variance of the restricted nodal length obeys the same asymptotic law as the total nodal length, and these are asymptotically fully correlated. This, among other things, allows for a statistical reconstruction of the full toral length based on partial information. One of the key novel ingredients of our work, borrowing from number theory, is the use of bounds for the so-called spectral quasi-correlations, i.e., unusually small sums of lattice points lying on the same circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), 2083–2091.

    Article  MathSciNet  Google Scholar 

  2. M. V. Berry, Semiclassical mechanics of regular and irregular motion, in Chaotic Behavior of Deterministic Systems (Les Houches, 1981), North-Holland, Amsterdam, 1983, pp. 171–271.

    Google Scholar 

  3. M. V. Berry, Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, J. Phys. A 35 (2002), 3025–3038.

    Article  MathSciNet  Google Scholar 

  4. J. Bourgain, On toral eigenfunctions and the random wave model, Israel J. Math. 201 (2014), 611–630.

    Article  MathSciNet  Google Scholar 

  5. E. Bombieri and J. Bourgain, A problem on sums of two squares, Int. Math. Res. Not. IMRN 11 (2015), 3343–3407.

    MathSciNet  MATH  Google Scholar 

  6. J. Buckley and I. Wigman, On the number of nodal domains of toral eigenfunctions, Ann. Henri Poincare 17 (2016), 3027–3062.

    Article  MathSciNet  Google Scholar 

  7. J. Bourgain and Z. Rudnick, On the geometry of the nodal lines of eigenfunctions on the two-dimensional torus, Ann. Henri Poincare 12 (2011), 1027–1053.

    Article  MathSciNet  Google Scholar 

  8. Y. Colin de Verdiere, Ergodicite et fonctions propres du Laplacien, Comm. Math. Phys. 102 (1985), 497–502.

    Article  MathSciNet  Google Scholar 

  9. J. Cilleruelo, The distribution of the lattice points on circles, J. Number Theory 43 (1993), 198–202.

    Article  MathSciNet  Google Scholar 

  10. H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), 161–183.

    Article  MathSciNet  Google Scholar 

  11. P. Erdos and R. R. Hall, On the angular distribution of Gaussian integers with fixed norm, Discrete Math. 200 (1999), 87–94.

    Article  MathSciNet  Google Scholar 

  12. P. Erdos and A. Sarkozy, On the number of prime factors of integers, Acta Sci. Math 42 (1980), 237–246.

    MathSciNet  MATH  Google Scholar 

  13. A. Granville and I. Wigman, Planck-scale mass equidistribution of toral Laplace eigen-functions, Comm. Math. Phys. 355 (2017), 767–802.

    Article  MathSciNet  Google Scholar 

  14. X. Han, Small scale quantum ergodicity in negatively curved manifolds, Nonlinearity 28 (2015), 3263–3288.

    Article  MathSciNet  Google Scholar 

  15. X. Han, Small scale equidistribution of random eigenbases, Comm. Math. Phys., 349 (2017), 425–440.

    Article  MathSciNet  Google Scholar 

  16. H. Hezari and G. Riviere, Lpnorms, nodal sets, and quantum ergodicity, Adv. Math. 290 (2016), 938–966.

    Article  MathSciNet  Google Scholar 

  17. H. Hezari and G. Riviere, Quantitative equidistribution properties of toral eigenfunctions, J. Spectr. Theory 7 (2017), 471–485.

    Article  MathSciNet  Google Scholar 

  18. L. Fainsilber, P. Kurlberg and B. Wennberg, Lattice points on circles and discrete velocity models for the Boltzmann equation, SIAM J. Math. Anal. 37 (2006), 1903–1922.

    Article  MathSciNet  Google Scholar 

  19. M. Krishnapur, P. Kurlberg and I. Wigman, Nodal length fluctuations for arithmetic random waves, Ann. of Math. (2) 177 (2013), 699–737.

    Article  MathSciNet  Google Scholar 

  20. P. Kurlberg and I. Wigman, On probability measures arising from lattice points on circles, Math. Ann. 367 (2017), 1057–1098.

    Article  MathSciNet  Google Scholar 

  21. E. Landau, Uber die Einteilung der positiven Zahlen nach vier Klassen nach der Mindestzahl der zu ihrer addition Zusammensetzung erforderlichen Quadrate, Arch. Math. Phys. III (1908), 305–312.

    MATH  Google Scholar 

  22. S. Lester and Z. Rudnick, Small scale equidistribution of eigenfunctions on the torus, Comm. Math. Phys. 350 (2017), 279–300.

    Article  MathSciNet  Google Scholar 

  23. A. Logunov, Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure, Ann. Math. (2) 187 (2018), 221–239.

    Article  MathSciNet  Google Scholar 

  24. A. Logunov, Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture, Ann. Math. (2) 187 (2018), 241–262.

    Article  MathSciNet  Google Scholar 

  25. A. Logunov and E. Malinnikova, Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three, in 50 Years with Hardy Spaces, Birkhauser/Springer, Cham, 2018, pp. 333–344.

    Chapter  Google Scholar 

  26. D. Marinucci, G. Peccati, M. Rossi and I. Wigman, Non-universality of nodal length distribution for arithmetic random waves, Geom. Funct. Anal. 26 (2016), 926–960.

    Article  MathSciNet  Google Scholar 

  27. D. Marinucci and I. Wigman, On the excursion sets of spherical Gaussian eigenfunctions, J. Math. Phys. 52 (2011), 093301.

    Article  MathSciNet  Google Scholar 

  28. D. Marinucci and I. Wigman, On nonlinear functionals of random spherical eigenfunctions, Comm. Math. Phys. 327 (2014), 849–872.

    Article  MathSciNet  Google Scholar 

  29. D. Marinucci, M. Rossi and I. Wigman, The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), 374–390.

    Article  MathSciNet  Google Scholar 

  30. N. Nadirashvili, Geometry of nodal sets and multiplicity of eigenvalues, Currr. Dev. Math. (1997), 231–235.

  31. F. Oravecz, Z. Rudnick and I. Wigman, The Leray measure of nodal sets for random eigenfunctions on the torus, Ann. Inst. Fourier (Grenoble) 58 (2008), 299–335.

    Article  MathSciNet  Google Scholar 

  32. Z. Rudnick and I. Wigman, On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Ann. Henri Poincaré 9 (2008), 109–130.

    Article  MathSciNet  Google Scholar 

  33. Z. Rudnick and I. Wigman, Nodal intersections for random eigenfunctions on the torus, Amer. J. Math. 138 (2016), 1605–1644.

    Article  MathSciNet  Google Scholar 

  34. M. Rossi and I. Wigman, Asymptotic distribution of nodal intersections for arithmetic random waves, Nonlinearity 31 (2018), 4472.

    Article  MathSciNet  Google Scholar 

  35. A. Sartori, Planck-scale number of nodal domains for toral eigenfunctions, arXiv:1911.06247 [math.NT]

  36. A. Snirel’man, Ergodic properties of eigenfunctions, Uspekhi Mat. Nauk 180 (1974), 181–182.

    MathSciNet  Google Scholar 

  37. G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  38. K. Uhlenbeck, Generic properties of eigenfunctions, Avoer. J. Math. 98 (1976), 1059–1078.

    Article  MathSciNet  Google Scholar 

  39. I. Wigman, Fluctuation of the Nodal Length of Random Spherical Harmonics, Comm. Math. Phys., 298 (2010), 787–831

    Article  MathSciNet  Google Scholar 

  40. S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic sufaces, Duke Math. J. 55 (1987), 919–941.

    Article  MathSciNet  Google Scholar 

  41. A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189–201

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Wigman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benatar, J., Marinucci, D. & Wigman, I. Planck-scale distribution of nodal length of arithmetic random waves. JAMA 141, 707–749 (2020). https://doi.org/10.1007/s11854-020-0114-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0114-7

Navigation