Skip to main content
Log in

Sharp spectral transition for eigenvalues embedded into the spectral bands of perturbed periodic operators

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper, we consider the Schrödinger equation, \(Hu = - {u^"} + \left({V\left(x \right) + {V_0}\left(x \right)} \right)u = Eu,\) where V0(x) is 1-periodic and V(x) is a decaying perturbation. By Floquet theory, the spectrum of H0 = − ∇2 + V0 is purely absolutely continuous and consists of a union of closed intervals (often referred to as spectral bands). Given any finite set of points \(\left\{{{E_j}} \right\}_{j = 1}^N\) in any spectral band of H0 obeying a mild non-resonance condition, we construct smooth functions \(V\left(x \right) = {{O\left(1 \right)} \over {1 + \left| x \right|}}\) such that H = H0 + V has eigenvalues \(\left\{{{E_j}} \right\}_{j = 1}^N\). Given any countable set of points {Ej} in any spectral band of Ho obeying the same non-resonance condition, and any function h(x) > 0 going to infinity arbitrarily slowly, we construct smooth functions \(\left| {V\left(x \right)} \right| \le {{h\left(x \right)} \over {1 + \left| x \right|}}\) such that H = H0 + V has eigenvalues {Ej}. On the other hand, we show that there is no eigenvalue of H = H0 + V embedded in the spectral bands if \(V\left(x \right) = {{o\left(1 \right)} \over {1 + \left| x \right|}}\) as x goes to infinity. We prove also an analogous result for Jacobi operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (1975), 151–218, 1975.

    MATH  Google Scholar 

  2. F. V. Atkinson and W. N. Everitt, Bounds for the point spectrum for a Sturm—Liouville equation, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), 57–66.

    Article  MathSciNet  Google Scholar 

  3. M. Christ and A. Kiselev, Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: some optimal results, J. Amer. Math. Soc. 11 (1998), 771–797.

    Article  MathSciNet  Google Scholar 

  4. S. Denisov and A. Kiselev, Spectral properties of Schrödinger operators with decaying potentials, in Spectral Theory and Mathematical Physics, American Mathematical Society, Providence, RI, 2007, pp. 565–589.

    MATH  Google Scholar 

  5. S. Halvorsen, Sharp bounds and Lp-stability for solutions of second order linear ordinary differential equations, Report No. 9/75, Matematisk Institutt, Trondheim, 1975.

  6. J. Janas and S. Simonov, A Weyl—Titchmarsh type formula for a discrete Schrödinger operator with Wigner—von Neumann potential, Studia Math. 201 (2010), 167–189.

    Article  MathSciNet  Google Scholar 

  7. S. Jitomirskaya and W. Liu, Noncompact complete Riemannian manifolds with singular continuous spectrum embedded in the essential spectrum of its Laplacian I. The hyperbolic case,Trans. Amer. Math. Soc. to appear.

  8. S. Jitomirskaya and W. Liu, Noncompact complete Riemannian manifolds with dense eigenvalues embedded in the essential spectrum of the laplacian, Geom. Funct. Anal. 29 (2019), 238–257.

    Article  MathSciNet  Google Scholar 

  9. E. Judge, S. Naboko and I. Wood, Eigenvalues for perturbed periodic Jacobi matrices by the Wigner—von Neumann approach, Integral Equations Operator Theory 85 (2016), 427–450.

    Article  MathSciNet  Google Scholar 

  10. E. Judge, S. Naboko and I. Wood, Embedded eigenvalues for perturbed periodic Jacobi operators using a geometric approach, J. Difference Equ. Appl. 24 (2018), 1247–1272.

    Article  MathSciNet  Google Scholar 

  11. E. Judge, S. Naboko and I. Wood, Spectral results for perturbed periodic Jacobi matrices using the discrete Levinson technique, Studia Math. 242 (2018), 179–215.

    Article  MathSciNet  Google Scholar 

  12. A. Kiselev, Imbedded singular continuous spectrum for Schrödinger operators, J. Amer. Math. Soc. 18 (2005), 571–603.

    Article  MathSciNet  Google Scholar 

  13. A. Kiselev, Y. Last and B. Simon, Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators, Comm. Math. Phys. 194 (1998), 1–45.

    Article  MathSciNet  Google Scholar 

  14. A. Kiselev, C. Remling and B. Simon, Effective perturbation methods for one-dimensional Schrödinger operators, J. Differential Equations 151 (1999), 290–312.

    Article  MathSciNet  Google Scholar 

  15. H. Kruger, On the existence of embedded eigenvalues, J. Math. Anal. Appl. 395 (2012), 776–787.

    Article  MathSciNet  Google Scholar 

  16. W. Liu, Revisiting the Christ-Kiselev’s multi-linear operator technique and its applications to Schrödinger operators, submitted.

  17. W. Liu, Absence of singular continuous spectrum for perturbed discrete Schrödinger operators, J. Math. Anal. Appl. 472 (2019), 1420–1429.

    Article  MathSciNet  Google Scholar 

  18. W. Liu, The asymptotical behaviour of embedded eigenvalues for perturbed periodic operators, Pure Appl. Funct. Anal 4 (2019), 589–602.

    MathSciNet  Google Scholar 

  19. W. Liu, Criteria for eigenvalues embedded into the absolutely continuous spectrum of perturbed Stark type operators, J. Funct. Anal. 276 (2019), 2936–2967.

    Article  MathSciNet  Google Scholar 

  20. W. Liu, Criteria for embedded eigenvalues for discrete Schrödinger operators, Int. Math. Res. Not. IMRN, https://doi.org/10.1093/imrn/rnz262.

  21. W. LiuandD. C. Ong, Sharp spectral transition for eigenvalues embedded into the spectral bands of perturbed periodic Jacobi operators, arXiv:1805.01571 [math.SP]

  22. W. LiuandD. C. Ong, Sharp spectral transition for eigenvalues embedded into the spectral bands of perturbed periodic Schrödinger operators, arXiv:1805.01569 [math.SP]

  23. V. Lotoreichik and S. Simonov, Spectral analysis of the half-line Kronig—Penney model with Wigner—von Neumann perturbations, Rep. Math. Phys. 74 (2014), 45–72.

    Article  MathSciNet  Google Scholar 

  24. M. Lukic, Schrödinger operators with slowly decaying Wigner—von Neumann type potentials, J. Spectr. Theory 3 (2013), 147–169.

    Article  MathSciNet  Google Scholar 

  25. M. Lukic, A class of Schrödinger operators with decaying oscillatory potentials, Comm. Math. Phys. 326 (2014), 441–458.

    Article  MathSciNet  Google Scholar 

  26. M. Lukic and D. C. Ong, Wigner—von Neumann type perturbations of periodic Schrödinger operators, Trans. Amer. Math. Soc. 367 (2015), 707–724.

    Article  MathSciNet  Google Scholar 

  27. M. Lukic and D. C. Ong, Generalized Prüfer variables for perturbations of Jacobi and CMV matrices, J. Math. Anal. Appl. 444 (2016), 1490–1514.

    Article  MathSciNet  Google Scholar 

  28. S. N. Naboko, Dense point spectra of Schrödinger and Dirac operators, Theoret. and Math. Phys. 68 (1986), 646–653.

    Article  Google Scholar 

  29. C. Remling, Bounds on embedded singular spectrum for one-dimensional Schrödinger operators, Proc. Amer. Math. Soc. 128 (2000), 161–171.

    Article  MathSciNet  Google Scholar 

  30. B. Simon, Some Schrödinger operators with dense point spectrum, Proc. Amer. Math. Soc. 125 (1997), 203–208.

    Article  MathSciNet  Google Scholar 

  31. B. Simon, Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory, American Mathematical Society, Providence, RI, 2009.

    Google Scholar 

  32. S. Simonov, Zeroes of the spectral density of the Schrödinger operator with the slowly decaying Wigner—von Neumannpotential, Math. Z. 284 (2016), 335–411.

    Article  MathSciNet  Google Scholar 

  33. J. von Neuman and E. Wigner, Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen, Zhurnal Physik 30 (1929), 467–470.

    MATH  Google Scholar 

Download references

Acknowledgments

W. L. was supported by NSF DMS-1700314/2015683, DMS-2000345, the AMS-Simons Travel Grant 2016–2018 and the Southeastern Conference (SEC) Faculty Travel Grant 2020–2021. D. O. was supported by a grant from the Fundamental Research Grant Scheme of the Malaysian Ministry of Education (Grant No. FRGS/1/2018/STG06/XMU/02/1) and two Xiamen University Malaysia Research Funds (Grant No. XMUMRF/2018-C1/IMAT/0001 and XMUMRF/2020-C5/IMAT/0011).

The authors also wish to thank Jake Fillman, Svetlana Jitomirskaya, Milivoje Lukic, Christian Remling, and the anonymous referee for helpful conversations and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren C. Ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ong, D.C. Sharp spectral transition for eigenvalues embedded into the spectral bands of perturbed periodic operators. JAMA 141, 625–661 (2020). https://doi.org/10.1007/s11854-020-0111-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0111-x

Navigation