Skip to main content
Log in

Quantum Private Comparison without Classical Computation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

There are usually two kinds of signals i.e. quantum and classical to process in lots of existing protocols of quantum private comparison (QPC), for they employ quantum technology and classical computation to implement security and comparison, respectively. Classical operations and their information are prone to classical attacks with insufficient security. Therefore, a protocol of quantum gate-based QPC has been proposed without classical operations, but it is only applicable for qubits of computational basis. For its application to diagonal basis, this paper uses quantum gates and GHZ states to propose a new QPC protocol without classical data to process. There being no classical computation could lead to the improvement of security. The presented protocol is not only simple and efficient but also broadening applicable occasions. The analyses indicate its correctness and security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    ADS  MATH  Google Scholar 

  2. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)

    ADS  MATH  Google Scholar 

  4. Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L., Wu, C.H.: Quantum private comparison with a malicious third party. Quantum Inf. Process. 14(6), 2125–2133 (2015)

    ADS  MATH  Google Scholar 

  5. Lang, Y.-F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Ye, T.-Y., Ye, C.-Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Yang, Y.G., Xia, J., Jia, X., Shi, L., Zhang, H.: New quantum private comparison protocol without entanglement. Int. J. Quant. Inform. 10(6), 1250065 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147–156 (2017)

    ADS  Google Scholar 

  9. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Zi, W., Guo, F.Z., Luo, Y., Cao, S.H., Wen, Q.Y.: Quantum private comparison protocol with the random rotation. Int. J. Theor. Phys. 52(9), 3212–3219 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int. J. Quant. Inform. 11(4), 1350039 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semihonest third party. Quantum Inf. Process. 12(2), 877–885 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Cryptanalysis and improvement of quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14(12), 4593–4600 (2015)

    ADS  MathSciNet  Google Scholar 

  18. Lang, Y.-F.: Quantum gate-based quantum private comparison. Int. J. Theor. Phys. 59(3), 833–840 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284(12), 3160–3163 (2011)

    ADS  Google Scholar 

  21. Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W states. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)

    Google Scholar 

  22. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    ADS  Google Scholar 

  23. Lin, J., Tseng, H.Y., Hwang, T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011)

    ADS  Google Scholar 

  24. Li, Y.B., Wang, T.Y., Chen, H.Y., Li, M.D., Yang, Y.T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52(8), 2818–2825 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Xu, G.A., Chen, X.B., Wei, Z.H., Li, M.J., Yang, Y.X.: An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int. J. Quant. Inform. 10(4), 1250045 (2012)

    MathSciNet  Google Scholar 

  27. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with χ-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol usingχ-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with χ-type entangled states. Int. J. Theor. Phys. 52(11), 4185–4194 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Ji, Z.X., Zhang, H.G., Fan, P.R.: Two-party quantum private comparison protocol with maximally entangled seven-qubit state. Mod. Phys. Lett. A. 34(28), 1–179 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Luo, Q.B., Yang, G.W., She, K., Niu, W.N., Wang, Y.Q.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13(10), 2343–2352 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level bell states. Quantum Inf. Process. 16(7), 177 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Ye, C.Q., Ye, T.Y.: Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf. Process. 17(10), 252 (2018)

    ADS  MATH  Google Scholar 

  39. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. http://arxiv.org/pdf/quant-ph/160707961.pdf

  40. Thapliyala, K., Sharmab, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. http://arxiv.org/pdf/quant-ph/160800101.pdf

  41. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A. 56(2), 1154–1162 (1997)

    ADS  Google Scholar 

  42. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)

    ADS  Google Scholar 

  43. Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43.1–43.14 (2002)

    Google Scholar 

  44. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)

    ADS  Google Scholar 

  45. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002)

    ADS  Google Scholar 

  46. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    ADS  Google Scholar 

  47. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)

    ADS  Google Scholar 

  48. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

The author Lang Yan-Feng thanks Daughter Lang Duo-Zi for her support on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Feng Lang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, YF. Quantum Private Comparison without Classical Computation. Int J Theor Phys 59, 2984–2992 (2020). https://doi.org/10.1007/s10773-020-04559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04559-1

Keywords

Navigation