Skip to main content

Advertisement

Log in

Omega-3 polyunsaturated fatty acids: a promising approach for the management of oral lichen planus

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Oral lichen planus (OLP) is a T-cell-mediated inflammatory disease with a risk of malignant transformation. Although the etiology of OLP is still uncertain, growing evidence suggests that oral microbiota, antigen-specific, and non-specific mechanisms are involved in the pathogenesis of OLP. Antigen-specific mechanisms include antigen presentation, T-cell activation, nuclear factor-kappa B signaling pathway, and cytokine secretion, while non-specific mechanisms consist of matrix metalloproteinases (MMP)-9 upregulation, psychological pressure, oxidative damage, aberrant expression of microRNAs (miRNAs), and autophagy. Till now, there is no cure for OLP, and the main purpose of OLP therapy is symptomatic control.

Finding

Seafood and its derivative omega-3 polyunsaturated fatty acids (n-3 PUFAs) can suppress antigen presentation, T-cell activation, and nuclear factor-kappa B signaling pathway, modulate the overexpressed inflammatory cytokines, inhibit the expression of MMP-9, as well as regulate the expression of miRNAs and autophagy. And they are possible agents for ameliorating psychological disorder and oxidative damage. Moreover, n-3 PUFAs supplementation has a beneficial effect on preventing tumorigenesis.

Conclusion

n-3 PUFAs consumption may provide a non-toxic, inexpensive administration for OLP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CTLs:

Cytotoxic T lymphocytes

DCs:

Dendritic cells

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

HPA:

Hypothalamic–pituitary–adrenocortical

ICAM-1:

Intercellular adhesion molecule 1

INF-γ:

Interferon-γ

IL:

Interleukin

LFA-1:

Lymphocyte function-associated antigen 1

LCs:

Langerhans cells

miRNAs:

microRNAs

MHC II:

Major histocompatibility class II

MMPs:

Matrix metalloproteinases

NF-κB:

Nuclear factor-kappa B

n-3 PUFAs:

omega-3 Polyunsaturated fatty acids

OLP:

Oral lichen planus

OPMD:

Oral potentially malignant disorder

PPARα:

Peroxisome proliferator-activated receptor alpha

ROS:

Reactive oxygen species

Th:

T helper

TIMPs:

Tissue inhibitors of metalloproteinases

TNF-α:

Tumor necrosis factor-α

References

  1. Carrozzo M, Porter S, Mercadante V, Fedele S. Oral lichen planus: A disease or a spectrum of tissue reactions? Types, causes, diagnostic algorhythms, prognosis, management strategies. Periodontol 2000. 2019;80(1):105–25. https://doi.org/10.1111/prd.12260.

    Article  PubMed  Google Scholar 

  2. Alrashdan MS, Cirillo N, McCullough M. Oral lichen planus: a literature review and update. Arch Dermatol Res. 2016;308(8):539–51. https://doi.org/10.1007/s00403-016-1667-2.

    Article  PubMed  Google Scholar 

  3. Khandelwal V, Nayak PA, Nayak UA, Gupta A. Oral lichen planus in a young Indian child. BMJ Case Rep. 2013. https://doi.org/10.1136/bcr-2013-010516.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aghbari SMH, Abushouk AI, Attia A, Elmaraezy A, Menshawy A, Ahmed MS, et al. Malignant transformation of oral lichen planus and oral lichenoid lesions: a meta-analysis of 20095 patient data. Oral Oncol. 2017;68:92–102. https://doi.org/10.1016/j.oraloncology.2017.03.012.

    Article  CAS  PubMed  Google Scholar 

  5. Gupta S, Jawanda M. Oral Lichen Planus: an update on etiology, pathogenesis, clinical presentation, diagnosis and management. Indian J Dermatol. 2015;60(3):222–9. https://doi.org/10.4103/0019-5154.156315.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Olson MA, Rogers RS, Bruce AJ. Oral lichen planus. Clin Dermatol. 2016;34(4):495–504. https://doi.org/10.1016/j.clindermatol.2016.02.023.

    Article  PubMed  Google Scholar 

  7. Naqvi AZ, Mu L, Hasturk H, Van Dyke TE, Mukamal KJ, Goodson JM. Impact of docosahexaenoic acid therapy on subgingival plaque microbiota. J Periodontol. 2017;88(9):887–95. https://doi.org/10.1902/jop.2017.160398.

    Article  CAS  PubMed  Google Scholar 

  8. Choi YS, Kim Y, Yoon HJ, Baek KJ, Alam J, Park HK, et al. The presence of bacteria within tissue provides insights into the pathogenesis of oral lichen planus. Sci Rep. 2016;6:29186–99. https://doi.org/10.1038/srep29186.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kurago ZB. Etiology and pathogenesis of oral lichen planus: an overview. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(1):72–80. https://doi.org/10.1016/j.oooo.2016.03.011.

    Article  PubMed  Google Scholar 

  10. Roopashree MR, Gondhalekar RV, Shashikanth MC, George J, Thippeswamy SH, Shukla A. Pathogenesis of oral lichen planus—a review. J Oral Pathol Med. 2010;39(10):729–34. https://doi.org/10.1111/j.1600-0714.2010.00946.x.

    Article  CAS  PubMed  Google Scholar 

  11. Lu R, Zhou G, Du GF, Xu XY, Yang JG, Hu JY. Expression of T-bet and GATA-3 in peripheral blood mononuclear cells of patients with oral lichen planus. Arch Oral Biol. 2011;56:499–505. https://doi.org/10.1016/j.archoralbio.2010.11.006.

    Article  CAS  PubMed  Google Scholar 

  12. Xie SX, Ding L, Xiong ZG, Zhu SR. Implications of Th1 and Th17 Cells in pathogenesis of oral lichen planus. J Huazhong Univ Sci Technol. 2012;32(3):451–7. https://doi.org/10.1007/s11596-012-0078-7.

    Article  CAS  Google Scholar 

  13. Pippi R, Romeo U, Santoro M, Del Vecchio A, Scully C, Petti S. Psychological disorders and oral lichen planus: matched case-control study and literature review. Oral Dis. 2016;22(3):226–34. https://doi.org/10.1111/odi.12423.

    Article  CAS  PubMed  Google Scholar 

  14. Darczuk D, Krzysciak W, Kaczmarzyk T, Vyhouskaya P, Kesek B, Galecka-Wanatowicz D, et al. Salivary oxidative status in patients with oral lichen planus. J Physiol Pharmacol. 2016;67(6):885–94.

    CAS  PubMed  Google Scholar 

  15. Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457–65. https://doi.org/10.1517/14740338.2016.1140743.

    Article  CAS  PubMed  Google Scholar 

  16. Parolini C. Effects of fish n-3 PUFAs on intestinal microbiota and immune system. Mar Drugs. 2019;17(6):374–401. https://doi.org/10.3390/md17060374.

    Article  CAS  PubMed Central  Google Scholar 

  17. Adarme-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact. 2012;11(1):96–106. https://doi.org/10.1186/1475-2859-11-96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Calder PC. Mechanisms of action of (n-3) fatty acids. J Nutr. 2012;142(3):592S–9S. https://doi.org/10.3945/jn.111.155259.

    Article  CAS  PubMed  Google Scholar 

  19. Hou TY, Monk JM, Fan YY, Barhoumi R, Chen YQ, Rivera GM, et al. n-3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4 + T-cell activation. Biochem J. 2012;443(1):27–37. https://doi.org/10.1042/BJ20111589.

    Article  CAS  PubMed  Google Scholar 

  20. Yog R, Barhoumi R, McMurray DN, Chapkin RS. n-3 polyunsaturated fatty acids suppress mitochondrial translocation to the immunologic synapse and modulate calcium signaling in T cells. J Immunol. 2010;184(10):5865–73. https://doi.org/10.4049/jimmunol.0904102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shoda H, Yanai R, Yoshimura T, Nagai T, Kimura K, Sobrin L, et al. Dietary omega-3 fatty acids suppress experimental autoimmune uveitis in association with inhibition of Th1 and Th17 cell function. PLoS One. 2015;10(9):e0138241. https://doi.org/10.1371/journal.pone.0138241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang P, Kim W, Zhou L, Wang N, Ly LH, McMurray DN, et al. Dietary fish oil inhibits antigen-specific murine Th1 cell development by suppression of clonal expansion. J Nutr. 2006;136:2391–8. https://doi.org/10.1093/jn/136.9.2391.

    Article  CAS  PubMed  Google Scholar 

  23. Monk JM, Hou TY, Turk HF, McMurray DN, Chapkin RS. n3 PUFAs reduce mouse CD4 + T-cell ex vivo polarization into Th17 cells. J Nutr. 2013;143(9):1501–8. https://doi.org/10.3945/jn.113.178178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gioxari A, Kaliora AC, Marantidou F, Panagiotakos DP. Intake of u-3 polyunsaturated fatty acids in patients with rheumatoid arthritis: a systematic review and meta-analysis. Nutrition. 2018;45:114–24. https://doi.org/10.1016/j.nut.2017.06.023.

    Article  CAS  PubMed  Google Scholar 

  25. Scaioli E, Liverani E, Belluzzi A. The Imbalance between n-6/n-3 polyunsaturated fatty acids and inflammatory bowel disease: a comprehensive review and future therapeutic perspectives. Int J Mol Sci. 2017;18(12):2619–42. https://doi.org/10.3390/ijms18122619.

    Article  CAS  PubMed Central  Google Scholar 

  26. Clark CCT, Taghizadeh M, Nahavandi M, Jafarnejad S. Efficacy of omega-3 supplementation in patients with psoriasis: a meta-analysis of randomized controlled trials. Clin Rheumatol. 2019;38(4):977–88. https://doi.org/10.1007/s10067-019-04456-x.

    Article  PubMed  Google Scholar 

  27. Arriens C, Hynan LS, Lerman RH, Karp DR, Mohan C. Placebo-controlled randomized clinical trial of fish oil’s impact on fatigue, quality of life, and disease activity in systemic lupus erythematosus. Nutr J. 2015;14:82–93. https://doi.org/10.1186/s12937-015-0068-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kouchaki E, Afarini M, Abolhassani J, Mirhosseini N, Bahmani F, Masoud SA, et al. High-dose omega-3 fatty acid plus vitamin D3 supplementation affects clinical symptoms and metabolic status of patients with multiple sclerosis: a randomized controlled clinical trial. J Nutr. 2018;148(8):1380–6. https://doi.org/10.1093/jn/nxy116.

    Article  PubMed  Google Scholar 

  29. Barbadoro P, Annino I, Ponzio E, Romanelli RM, D’Errico MM, Prospero E, et al. Fish oil supplementation reduces cortisol basal levels and perceived stress: a randomized, placebo-controlled trial in abstinent alcoholics. Mol Nutr Food Res. 2013;57(6):1110–4. https://doi.org/10.1002/mnfr.201200676.

    Article  CAS  PubMed  Google Scholar 

  30. Jahangiri A, Leifert WR, Kind KL, McMurchie EJ. Dietary fish oil alters cardiomyocyte Ca2 + dynamics and antioxidant status. Free Radic Biol Med. 2006;40(9):1592–602. https://doi.org/10.1016/j.freeradbiomed.2005.12.026.

    Article  CAS  PubMed  Google Scholar 

  31. Noreen EE, Sass MJ, Crowe ML, Pabon VA, Brandauer J, Averill LK. Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J Int Soc Sports Nutr. 2010;7:31–8. https://doi.org/10.1186/1550-2783-7-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gammone MA, Riccioni G, Dorazio GPAN. Omega-3 polyunsaturated fatty acids: benefits and endpoints in sport. Nutrients. 2019;11:46–62. https://doi.org/10.3390/nu11010046.

    Article  CAS  Google Scholar 

  33. He Y, Gong D, Shi C, Shao F, Shi J, Fei J. Dysbiosis of oral buccal mucosa microbiota in patients with oral lichen planus. Oral Dis. 2017;23(5):674–82. https://doi.org/10.1111/odi.12657.

    Article  CAS  PubMed  Google Scholar 

  34. Ji S, Shin JE, Kim YC, Choi Y. Intracellular degradation of fusobacterium nucleatum in human gingival epithelial cells. Mol Cells. 2010;30:519–26. https://doi.org/10.1007/s10059-010-0142-8.

    Article  CAS  PubMed  Google Scholar 

  35. Carvalho M, Cavalieri D, Do Nascimento S, Lourenco TGB, Ramos DVR, Pasqualin DDC, et al. Cytokines levels and salivary microbiome play a potential role in oral lichen planus diagnosis. Sci Rep. 2019;9(1):18137–47. https://doi.org/10.1038/s41598-019-54615-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kragelund C, Keller MK. The oral microbiome in oral lichen planus during a 1-year randomized clinical trial. Oral Dis. 2019;25(1):327–38. https://doi.org/10.1111/odi.12961.

    Article  PubMed  Google Scholar 

  37. dos Pereira TS, de Silva-Alves JF, Gomes CC, do Nascimento AR, Stoianoff MA, Gomez RS. Kinetics of oral colonization by Candida spp. during topical corticotherapy for oral lichen planus. J Oral Pathol Med. 2014;43:570–5. https://doi.org/10.1111/jop.12174.

    Article  CAS  Google Scholar 

  38. Naqvi AZ, Hasturk H, Mu L, Phillips RS, Davis RB, Halem S, et al. Docosahexaenoic acid and periodontitis in adults: a randomized controlled trial. J Dent Res. 2014;93(8):767–73. https://doi.org/10.1177/0022034514541125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim M, Qie Y, Kim JPACH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe. 2016;20(2):202–14. https://doi.org/10.1016/j.chom.2016.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Watson H, Mitra S, Croden FC, Taylor M, Wood HM, Perry SL, et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut. 2018;67(11):1974–83. https://doi.org/10.1136/gutjnl-2017-314968.

    Article  CAS  PubMed  Google Scholar 

  41. Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol. 2014;14(11):719–30. https://doi.org/10.1038/nri3754.

    Article  CAS  PubMed  Google Scholar 

  42. Santoro A, Majorana A, Roversi L, Gentili F, Marrelli S, Vermi W, et al. Recruitment of dendritic cells in oral lichen planus. J Pathol. 2005;205(4):426–34. https://doi.org/10.1002/path.1699.

    Article  PubMed  Google Scholar 

  43. Verma NK, Kelleher D. Not just an adhesion molecule: LFA-1 contact tunes the T lymphocyte program. J Immunol. 2017;199(4):1213–21. https://doi.org/10.4049/jimmunol.1700495.

    Article  CAS  PubMed  Google Scholar 

  44. Payeras MR, Cherubini K, Figueiredo MA, Salum FG. Oral lichen planus: focus on etiopathogenesis. Arch Oral Biol. 2013;58(9):1057–69. https://doi.org/10.1016/j.archoralbio.2013.04.004.

    Article  CAS  PubMed  Google Scholar 

  45. Hughes DA, Pinder AC, Piper Z, Johnson IT, Lund EK. Fish oil supplementation inhibits the expression of major histocompatibility complex class II molecules and adhesion molecules on human monocytes. Am J Clin Nutr. 1996;63:267–72. https://doi.org/10.1093/ajcn/63.2.267.

    Article  CAS  PubMed  Google Scholar 

  46. Hughes DA, Pinder AC. n-3 Polyunsaturated fatty acids inhibit the antigen-presenting function of human monocytes. Am J Clin Nutr. 2000;71(suppl):357S–60S. https://doi.org/10.1093/ajcn/71.1.357s.

    Article  CAS  PubMed  Google Scholar 

  47. Kong W, Yen JH, Vassiliou E, Adhikary S, Toscano MG, Ganea D. Docosahexaenoic acid prevents dendritic cell maturation and in vitro and in vivo expression of the IL-12 cytokine family. Lipids Health Dis. 2010;9:12–22. https://doi.org/10.1186/1476-511X-9-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Renuka A, Agnihotri N, Bhatnagar A. Differential ratios of fish/corn oil ameliorated the colon carcinoma in rat by altering intestinal intraepithelial CD8(+) T lymphocytes, dendritic cells population and modulating the intracellular cytokines. Biomed Pharmacother. 2018;98:600–8. https://doi.org/10.1016/j.biopha.2017.12.041.

    Article  CAS  PubMed  Google Scholar 

  49. Sanderson P, MacPherson GG, Jenkins CH, Calder PC. Dietary fish oil diminishes the antigen presentation activity of rat dendritic cells. J Leukoc Biol. 1997;62:771–7. https://doi.org/10.1002/jlb.62.6.771.

    Article  CAS  PubMed  Google Scholar 

  50. Teague H, Rockett BD, Harris M, Brown DA, Shaikh SR. Dendritic cell activation, phagocytosis and CD69 expression on cognate T cells are suppressed by n-3 long-chain polyunsaturated fatty acids. Immunology. 2013;139(3):386–94. https://doi.org/10.1111/imm.12088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sugerman PB, Savage NW, Zhou X, Walsh LJ, Bigby M. Oral lichen planus. Clin Dermatol. 2000;18:533–9. https://doi.org/10.1016/s0738-081x(00)00142-5.

    Article  CAS  PubMed  Google Scholar 

  52. Marshall A, Celentano A, Cirillo N, Mirams M, McCullough M, Porter S. Immune receptors CD40 and CD86 in oral keratinocytes and implications for oral lichen planus. J Oral Sci. 2017;59(3):373–82. https://doi.org/10.2334/josnusd.16-0334.

    Article  CAS  PubMed  Google Scholar 

  53. Hu JY, Zhang J, Ma JZ, Liang XY, Chen GY, Lu R, et al. MicroRNA-155-IFN-gamma feedback loop in CD4(+)T cells of erosive type oral lichen planus. Sci Rep. 2015;5:16935–45. https://doi.org/10.1038/srep16935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Evans EJ, Esnouf RM, Manso-Sancho R, Gilbert RJ, James JR, Yu C, et al. Crystal structure of a soluble CD28-Fab complex. Nat Immunol. 2005;6(3):271–9. https://doi.org/10.1038/ni1170.

    Article  CAS  PubMed  Google Scholar 

  55. Sugerman PB, Satterwhite K, Bigby M. Autocytotoxic T-cell clones in lichen planus. Br J Dermatol. 2000;142:449–56. https://doi.org/10.1046/j.1365-2133.2000.03355.x.

    Article  CAS  PubMed  Google Scholar 

  56. Zhou G, Zhang J, Ren XW, Hu JY, Du GF, Xu XY. Increased B7-H1 expression on peripheral blood T cells in oral lichen planus correlated with disease severity. J Clin Immunol. 2012;32(4):794–801. https://doi.org/10.1007/s10875-012-9683-2.

    Article  CAS  PubMed  Google Scholar 

  57. Lu R, Zhang J, Sun W, Du G, Zhou G. Inflammation-related cytokines in oral lichen planus: an overview. J Oral Pathol Med. 2015;44(1):1–14. https://doi.org/10.1111/jop.12142.

    Article  CAS  PubMed  Google Scholar 

  58. McMurray DN, Jolly CA, Chapkin RS. Effects of dietary n-3 fatty acids on T cell activation and T cell receptor-mediated signaling in a murine model. J Infect Dis. 2000;182(Suppl 1):S103–7. https://doi.org/10.1086/315909.

    Article  CAS  PubMed  Google Scholar 

  59. Berra A, Tau J, Zapata G, Chiaradia P. Effects of pUFAs in a mouse model of HSV-1 chorioretinitis. Ocul Immunol Inflamm. 2017;25(6):844–54. https://doi.org/10.1080/09273948.2016.1184287.

    Article  CAS  PubMed  Google Scholar 

  60. Arrington JL, Mcmurray DN, Switzer KC, Fan Y-Y, Chapkin RS. Docosahexaenoic acid suppresses function of the CD28 costimulatory membrane receptor in primary murine and Jurkat T cells. J Nutr. 2000;2000:1147–53. https://doi.org/10.1093/jn/131.4.1147.

    Article  Google Scholar 

  61. Chang YF, Hou YC, Pai MH, Yeh SL, Liu JJ. Effects of ω-3 polyunsaturated fatty acids on the homeostasis of CD4 + T cells and lung injury in mice with polymicrobial sepsis. JPEN J Parenter Enteral Nutr. 2017;41(5):805–14. https://doi.org/10.1177/0148607115597670.

    Article  CAS  PubMed  Google Scholar 

  62. Owen AJ, Peter-Przyborowska BA, Hoy AJ, McLennan PL. Dietary fish oil dose- and time-response effects on cardiac phospholipid fatty acid composition. Lipids. 2004;39(10):955–61. https://doi.org/10.1007/s11745-004-1317-0.

    Article  CAS  PubMed  Google Scholar 

  63. Kong WM, Yen JH, Ganea D. Docosahexaenoic acid prevents dendritic cell maturation, inhibits antigen-specific Th1/Th17 differentiation and suppresses experimental autoimmune encephalomyelitis. Brain Behav Immun. 2011;25(5):872–82. https://doi.org/10.1016/j.bbi.2010.09.012.

    Article  CAS  PubMed  Google Scholar 

  64. Jia Q, Ivanov I, Zlatev ZZ, Alaniz RC, Weeks BR, Callaway ES, et al. Dietary fish oil and curcumin combine to modulate colonic cytokinetics and gene expression in dextran sodium sulphate-treated mice. Br J Nutr. 2011;106(4):519–29. https://doi.org/10.1017/S0007114511000390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou G, Xia K, Du GF, Chen XM, Xu XY, Lu R, et al. Activation of nuclear factor-kappa B correlates with tumor necrosis factor-alpha in oral lichen planus: a clinicopathologic study in atrophic-erosive and reticular form. J Oral Pathol Med. 2009;38(7):559–64. https://doi.org/10.1111/j.1600-0714.2009.00779.x.

    Article  CAS  PubMed  Google Scholar 

  66. Santoro A, Majorana A, Bardellini E, Festa S, Sapelli P, Facchetti F. NF-kappaB expression in oral and cutaneous lichen planus. J Pathol. 2003;201(3):466–72. https://doi.org/10.1002/path.1423.

    Article  CAS  PubMed  Google Scholar 

  67. Rusanen P, Marttila E, Uittamo J, Hagstrom J, Salo T, Rautemaa-Richardson R. TLR1-10, NF-kappaB and p53 expression is increased in oral lichenoid disease. PLoS One. 2017;12(7):e0181361. https://doi.org/10.1371/journal.pone.0181361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mbodji K, Charpentier C, Guerin C, Querec C, Bole-Feysot C, Aziz M, et al. Adjunct therapy of n-3 fatty acids to 5-ASA ameliorates inflammatory score and decreases NF-kappaB in rats with TNBS-induced colitis. J Nutr Biochem. 2013;24(4):700–5. https://doi.org/10.1016/j.jnutbio.2012.03.022.

    Article  CAS  PubMed  Google Scholar 

  69. Jia D, Heng LJ, Yang RH, Gao GD. Fish oil improves learning impairments of diabetic rats by blocking PI3K/AKT/nuclear factor-κB-mediated inflammatory pathways. Neuroscience. 2014;258:228–37. https://doi.org/10.1016/j.neuroscience.2013.11.016.

    Article  CAS  PubMed  Google Scholar 

  70. Jangale NM, Devarshi PP, Dubal AA, Ghule AE, Koppikar SJ, Bodhankar SL, et al. Dietary flaxseed oil and fish oil modulates expression of antioxidant and inflammatory genes with alleviation of protein glycation status and inflammation in liver of streptozotocin-nicotinamide induced diabetic rats. Food Chem. 2013;141(1):187–95. https://doi.org/10.1016/j.foodchem.2013.03.001.

    Article  CAS  PubMed  Google Scholar 

  71. Enguita M, Razquin N, Pamplona R, Quiroga J, Prieto J, Fortes P. The cirrhotic liver is depleted of docosahexaenoic acid (DHA), a key modulator of NF-kappaB and TGFbeta pathways in hepatic stellate cells. Cell Death Dis. 2019;10(1):14–27. https://doi.org/10.1038/s41419-018-1243-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Halade GV, Rahman MM, Bhattacharya A, Barnes JL, Chandrasekar B, Fernandes G. Docosahexaenoic acid-enriched fish oil attenuates kidney disease and prolongs median and maximal life span of autoimmune lupus-prone mice. J Immunol. 2010;184(9):5280–6. https://doi.org/10.4049/jimmunol.0903282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zuniga J, Cancino M, Medina F, Varela P, Vargas R, Tapia G, et al. N-3 PUFA supplementation triggers PPAR-alpha activation and PPAR-alpha/NF-kappaB interaction: anti-inflammatory implications in liver ischemia-reperfusion injury. PLoS One. 2011;6(12):e28502. https://doi.org/10.1371/journal.pone.0028502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maruyama T, Kono K, Mizukami Y, Kawaguchi Y, Mimura K, Watanabe M, et al. Distribution of Th17 cells and FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes, tumor-draining lymph nodes and peripheral blood lymphocytes in patients with gastric cancer. Cancer Sci. 2010;101(9):1947–54. https://doi.org/10.1111/j.1349-7006.2010.01624.x.

    Article  CAS  PubMed  Google Scholar 

  75. Gallai V, Sarchielli P, Trequattrini A, Franceschini M, Floridi A, Firenze C, et al. Cytokine secretion and eicosanoid production in the peripheral blood mononuclear cells of MS patients undergoing dietary supplementation with n-3 polyunsaturated fatty acids. J Neuroimmunol. 1995;56:143–53. https://doi.org/10.1016/0165-5728(94)00140-j.

    Article  CAS  PubMed  Google Scholar 

  76. Trebble T, Arden NK, Stroud MA, Wootton SA, Burdge GC, Miles EA, et al. Inhibition of tumour necrosis factor-α and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation. Br J Nutr. 2003;90(2):405–12. https://doi.org/10.1079/bjn2003892.

    Article  CAS  PubMed  Google Scholar 

  77. Ramirez-Ramirez V, Macias-Islas MA, Ortiz GG, Pacheco-Moises F, Torres-Sanchez ED, Sorto-Gomez TE, et al. Efficacy of fish oil on serum of TNF alpha, IL-1 beta, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxid Med Cell Longev. 2013;2013:709493–501. https://doi.org/10.1155/2013/709493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou XJ, Sugerman PB, Savage NW, Walsh LJ. Matrix metalloproteinases and their inhibitors in oral lichen planus. J Cutan Pathol. 2001;28:72–82. https://doi.org/10.1034/j.1600-0560.2001.280203.x.

    Article  CAS  PubMed  Google Scholar 

  79. Maciejczyk M, Pietrzykowska A, Zalewska A, Knas M, Daniszewska I. The Significance of matrix metalloproteinases in oral diseases. Adv Clin Exp Med. 2016;25(2):383–90. https://doi.org/10.17219/acem/30428.

    Article  PubMed  Google Scholar 

  80. Shinto L, Marracci G, Bumgarner L, Yadav V. The effects of omega-3 Fatty acids on matrix metalloproteinase-9 production and cell migration in human immune cells: implications for multiple sclerosis. Autoimmune Dis. 2011;2011:134592–8. https://doi.org/10.4061/2011/134592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fogagnolo Mauricio A, Pereira JA, Santo Neto H, Marques MJ. Effects of fish oil containing eicosapentaenoic acid and docosahexaenoic acid on dystrophic mdx mice hearts at later stages of dystrophy. Nutrition. 2016;32(7–8):855–62. https://doi.org/10.1016/j.nut.2016.01.015.

    Article  CAS  PubMed  Google Scholar 

  82. Shinto L, Marracci G, Baldauf-Wagner S, Strehlow A, Yadav V, Stuber L, et al. Omega-3 fatty acid supplementation decreases matrix metalloproteinase-9 production in relapsing-remitting multiple sclerosis. Prostag Leukotr Ess. 2009;80(2–3):131–6. https://doi.org/10.1016/j.plefa.2008.12.001.

    Article  CAS  Google Scholar 

  83. Rad M, Hashemipoor MA, Mojtahedi A, Zarei MR, Chamani G, Kakoei S, et al. Correlation between clinical and histopathologic diagnoses of oral lichen planus based on modified WHO diagnostic criteria. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):796–800. https://doi.org/10.1016/j.tripleo.2009.02.020.

    Article  PubMed  Google Scholar 

  84. Baek J, Lee MG. Oxidative stress and antioxidant strategies in dermatology. Redox Rep. 2016;21(4):164–9. https://doi.org/10.1179/1351000215Y.0000000015.

    Article  CAS  PubMed  Google Scholar 

  85. Lightfoot YL, Blanco LP, Kaplan MJ. Metabolic abnormalities and oxidative stress in lupus. Curr Opin Rheumatol. 2017;29(5):442–9. https://doi.org/10.1097/BOR.0000000000000413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hashemy SI, Gharaei S, Vasigh S, Kargozar S, Alirezaei B, Keyhani FJ, et al. Oxidative stress factors and C-reactive protein in patients with oral lichen planus before and 2 weeks after treatment. J Oral Pathol Med. 2016;45(1):35–40. https://doi.org/10.1111/jop.12326.

    Article  CAS  PubMed  Google Scholar 

  87. Battinoa M, Greabub M, Totanb A, Bullonc P, Bucurd A, Tovarue S, et al. Oxidative stress markers in oral lichen planus. BioFactors. 2008;33:301–10. https://doi.org/10.1002/biof.5520330406.

    Article  Google Scholar 

  88. Upadhyay RB, Carnelio S, Shenoy RP, Gyawali P, Mukherjee M. Oxidative stress and antioxidant defense in oral lichen planus and oral lichenoid reaction. Scand J Clin Lab Invest. 2010;70(4):225–8. https://doi.org/10.3109/00365511003602455.

    Article  CAS  PubMed  Google Scholar 

  89. Hong MY, Hoh E, Kang B, DeHamer R, Kim JY, Lumibao J. Fish oil contaminated with persistent organic pollutants induces colonic aberrant crypt foci formation and reduces antioxidant enzyme gene expression in rats. J Nutr. 2017;147(8):1524–30. https://doi.org/10.3945/jn.117.251082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lopez-Jornet P, Cayuela CA, Tvarijonaviciute A, Parra-Perez F, Escribano D, Ceron J. Oral lichen planus: salival biomarkers cortisol, immunoglobulin A, adiponectin. J Oral Pathol Med. 2016;45(3):211–7. https://doi.org/10.1111/jop.12345.

    Article  CAS  PubMed  Google Scholar 

  91. Kim JE, Cho BK, Cho DH, Park HJ. Expression of hypothalamic-pituitary-adrenal axis in common skin diseases: evidence of its association with stress-related disease activity. Acta Derm Venereol. 2013;93(4):387–93. https://doi.org/10.2340/00015555-1557.

    Article  CAS  PubMed  Google Scholar 

  92. Nadendla LK. Association of salivary vortisol and anxiety levels in lichen planus patients. J Clin Diagnostic Res. 2014;8(12):ZC01–3. https://doi.org/10.7860/jcdr/2014/8058.5225.

    Article  Google Scholar 

  93. Liu XF, Wei ZY, Bai CL, Ding XB, Li X, Su GH, et al. Insights into the function of n-3 PUFAs in fat-1 transgenic cattle. J Lipid Res. 2017;58(8):1524–35. https://doi.org/10.1194/jlr.M072983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xie X, Wang X, Mick GJ, Kabarowski JH, Wilson LS, Barnes S, et al. Effect of n-3 and n-6 polyunsaturated fatty acids on microsomal P450 steroidogenic enzyme activities and in vitro cortisol production in adrenal tissue from yorkshire boars. Endocrinology. 2016;157(4):1512–21. https://doi.org/10.1210/en.2015-1831.

    Article  CAS  PubMed  Google Scholar 

  95. Del Brutto OH, Mera RM, Ha JE, Gillman J, Zambrano M, Castillo PR. Dietary fish intake and sleep quality: a population-based study. Sleep Med. 2016;17:126–8. https://doi.org/10.1016/j.sleep.2015.09.021.

    Article  PubMed  Google Scholar 

  96. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  97. Peng Q, Zhang J, Zhou G. Differentially circulating exosomal microRNAs expression profiling in oral lichen planus. Am J Transl Res. 2018;10(9):2848–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang JG, Sun YR, Chen GY, Liang XY, Zhang J, Zhou G. Different expression of MicroRNA-146a in peripheral blood CD4(+) T cells and lesions of oral lichen planus. Inflammation. 2016;39(2):860–6. https://doi.org/10.1007/s10753-016-0316-4.

    Article  CAS  PubMed  Google Scholar 

  99. Albracht-Schulte K, Gonzalez S, Jackson A, Wilson S, Ramalingam L, Kalupahana NS, et al. Eicosapentaenoic acid improves hepatic metabolism and reduces inflammation independent of obesity in high-fat-fed mice and in HepG2 cells. Nutrients. 2019;11(3):599–616. https://doi.org/10.3390/nu11030599.

    Article  CAS  PubMed Central  Google Scholar 

  100. Zheng Z, Ge Y, Zhang J, Xue M, Li Q, Lin D, et al. PUFA diets alter the microRNA expression profiles in an inflammation rat model. Mol Med Rep. 2015;11(6):4149–57. https://doi.org/10.3892/mmr.2015.3318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tan YQ, Zhang J, Zhou G. Autophagy and its implication in human oral diseases. Autophagy. 2017;13(2):225–36. https://doi.org/10.1080/15548627.2016.1234563.

    Article  CAS  PubMed  Google Scholar 

  102. Shen L, Yang Y, Ou T, Key CCC, Tong SH, Sequeira RC, et al. Dietary PUFAs attenuate NLRP3 inflammasome activation via enhancing macrophage autophagy. J Lipid Res. 2017;58(9):1808–21. https://doi.org/10.1194/jlr.m075879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu Y, Messadi DV, Wu H, Hu S. Oral lichen planus is a unique disease model for studying chronic inflammation and oral cancer. Med Hypotheses. 2010;75(6):492–4. https://doi.org/10.1016/j.mehy.2010.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tampa M, Caruntu C, Mitran M, Mitran C, Sarbu I, Rusu LC, et al. Markers of oral lichen planus malignant transformation. Dis Markers. 2018;2018:1959506. https://doi.org/10.1155/2018/1959506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mignogna MD, Fedele S, Lo Russo L, Lo Muzio L, Bucci E. Immune activation and chronic inflammation as the cause of malignancy in oral lichen planus: is there any evidence? Oral Oncol. 2004;40(2):120–30. https://doi.org/10.1016/j.oraloncology.2003.08.001.

    Article  PubMed  Google Scholar 

  106. Peng Q, Zhang J, Ye X, Zhou G. Tumor-like microenvironment in oral lichen planus: evidence of malignant transformation? Expert Rev Clin Immunol. 2017;13(6):635–43. https://doi.org/10.1080/1744666X.2017.1295852.

    Article  CAS  PubMed  Google Scholar 

  107. Tabatabaei SH, Sheikhha MH, Karbasi MHA, Zarmehi S, Hoseini M. Evaluation of polymorphism of P53 protein codon 72 in oral lichen planus by PCR technique. J Dent Res Dent Clin Dent Prospects. 2018;12(4):245–51. https://doi.org/10.15171/joddd.2018.038.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Laniosz V, Torgerson RR, Ramos-Rodriguez AJ, Ma JE, Mara KC, Weaver AL, et al. Incidence of squamous cell carcinoma in oral lichen planus: a 25-year population-based study. Int J Dermatol. 2019;58(3):296–301. https://doi.org/10.1111/ijd.14215.

    Article  CAS  PubMed  Google Scholar 

  109. Borghetti G, Yamaguchi AA, Aikawa J, Yamazaki RK, de Brito GA, Fernandes LC. Fish oil administration mediates apoptosis of Walker 256 tumor cells by modulation of p53, Bcl-2, caspase-7 and caspase-3 protein expression. Lipids Health Dis. 2015;14:94–9. https://doi.org/10.1186/s12944-015-0098-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Manna S, Chakraborty T, Ghosh B, Chatterjee M, Panda A, Srivastava S, et al. Dietary fish oil associated with increased apoptosis and modulated expression of Bax and Bcl-2 during 7,12-dimethylbenz(alpha)anthracene-induced mammary carcinogenesis in rats. Prostag Leukotr Ess. 2008;79(1–2):5–14. https://doi.org/10.1016/j.plefa.2008.05.005.

    Article  CAS  Google Scholar 

  111. Eltweri AM, Howells LM, Thomas AL, Dennison AR, Bowrey DJ. Effects of Omegaven(R), EPA, DHA and oxaliplatin on oesophageal adenocarcinoma cell lines growth, cytokine and cell signal biomarkers expression. Lipids Health Dis. 2018;17(1):19–28. https://doi.org/10.1186/s12944-018-0664-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Song M, Zhang X, Meyerhardt JA, Giovannucci EL, Ogino S, Fuchs CS, et al. Marine omega-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut. 2017;66(10):1790–6. https://doi.org/10.1136/gutjnl-2016-311990.

    Article  CAS  PubMed  Google Scholar 

  113. European Food Safety Authority. Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010;8(3):1461–568. https://doi.org/10.2903/j.efsa.2010.1461.

    Article  CAS  Google Scholar 

  114. Papanikolaou Y, Brooks J, Reider C, Fulgoni VLUS. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003–2008. Nutr J. 2014;13:31–7. https://doi.org/10.1186/1475-2891-13-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wensing AGCL, Mensink RP, Hornstra G. Effects of dietary n-3 polyunsaturated fatty acids from plant and marine origin on platelet aggregation in healthy elderly subjects. Br J Nutr. 1999;82(3):183–91. https://doi.org/10.1017/s0007114599001361.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our group and the laboratory members have made contributions to this review and they all deserve our acknowledgement. Duo-Na Xia came up with the idea, wrote and edited the manuscript, and designed and executed all the figures. Gang Zhou has contributed to the conception, discussion, and critical review of the manuscript. Ya-Qin Tan and Jing-Ya Yang have contributed to the discussion and especially to the thoughtful suggestion part. This work was supported by grants from National Natural Science Foundation of China (No. 81771080, No. 81970949) to Professor Zhou Gang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhou.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, DN., Tan, YQ., Yang, JY. et al. Omega-3 polyunsaturated fatty acids: a promising approach for the management of oral lichen planus. Inflamm. Res. 69, 989–999 (2020). https://doi.org/10.1007/s00011-020-01388-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01388-0

Keywords

Navigation