Skip to main content
Log in

Modulation of spatial memory and expression of hippocampal neurotransmitter receptors by selective lesion of medial septal cholinergic and GABAergic neurons

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The medial septum (MS) is an important modulator of hippocampal function. The degree of damage in which the particular set of septo-hippocampal projections contributes to the deficits of spatial memory with concomitant changes of hippocampal receptors expression has not been studied till present. Therefore, we investigated spatial memory and the expression level of cholinergic (α7 nACh and M1), GABAergic (α1 subunit of GABAA) and glutamatergic (NR2B subunit of NMDA and GluR 1 subunit of AMPA) receptors in the hippocampus following selective lesions of cholinergic and GABAergic septo-hippocampal projection. Learning process and long-term spatial memory were assessed using a Morris water maze. The obtained results revealed that in contrast to cholinergic lesions, rats with MS GABAergic lesions exhibit a retention deficit in 3 days after training. Western blot analyses revealed the MS cholinergic lesions have significant effect on the expression level of the M1 mACh receptors, while MS GABAergic lesions induce dramatic modulations of hippocampal glutamatergic, cholinergic and GABAergic receptors expression. These results for the first time demonstrated that selective lesions of MS cholinergic and GABAergic neurons differentially affect long-term spatial memory and the memory deficit after MS GABAergic lesion is paralleled with significant changes of hippocampal glutamate, GABA and acetylcholine receptors expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

All primary data are provided in Supplementary Material 2.

References

  • Araque A, Martín ED, Perea G, Arellano JI, Buño W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22:2443–2450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter MG, Gallagher M (1996) Intact spatial learning in both young and aged rats following selective removal of hippocampal cholinergic input. Behav Neurosci 110:460–467

    CAS  PubMed  Google Scholar 

  • Bell KA, Shim H, Chen CK, McQuiston AR (2011) Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain alpha4 and beta2 subunits. Neuropharmacology 61:1379–1388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broadbent NJ, Squire LR, Clark RE (2004) Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci 101:14515–14520

    CAS  PubMed  Google Scholar 

  • Cai L, Gibbs RB, Johnson DA (2012) Recognition of novel objects and their location in rats with selective cholinergic lesion of the medial septum. Neurosci Lett 506:261–265

    CAS  PubMed  Google Scholar 

  • Chen W, Xu WH (2015) Beta-actin as a loading control: less than 2 mu g of total protein should be loaded. Electrophoresis 36:2046–2049

    CAS  PubMed  Google Scholar 

  • Cheng Q, Yakel JL (2015) The effect of α7 nicotinic receptor activation on glutamatergic transmission in the hippocampus. Biochem Pharmacol 97:439–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dashniani MG, Burjanadze MA, Naneishvili TL, Chkhikvishvili NC, Beselia GV, Kruashvili LB, Pochkhidze NO, Chighladze MR (2015) Exploratory behavior and recognition memory in medial septal electrolytic, neuro- and immunotoxic lesioned rats. Physiol Res 5(64):755–767

    Google Scholar 

  • Dashniani MG, Chighladze MR, Solomonia RO, Burjanadze MA, Kandashvili M, Chkhikvishvili NC, Beselia GV, Kruashvili LB (2020) Memantine treatment prevents okadaic acid induced neurotoxicity at the systemic and molecular levels. NeuroReport 31(4):281–286

    CAS  PubMed  Google Scholar 

  • Dittmer A, Dittmer J (2006) Beta-actin is not are liable loading control in Western blot analysis. Electrophoresis 27:2844–2845

    CAS  PubMed  Google Scholar 

  • Dwyer TA, Servatius RJ, Pang KC (2007) Noncholinergic lesions of the medial septum impair sequential learning of different spatial locations. J Neurosci 27:299–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández de Sevilla D, Buño W (2010) The muscarinic long-term enhancement of NMDA and AMPA receptor-mediated transmission at Schaffer collateral synapses develop through different intracellular mechanisms. J Neurosci 30(33):11032–11042

    PubMed  Google Scholar 

  • Fernándezde Sevilla D, Núñez A, Borde M, Malinow R, Buño W (2008) Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons. J Neurosci 28:1469–1478

    Google Scholar 

  • Freedman R, Goldowitz D (2010) Studies on the hippocampal formation: from basic development to clinical applications: studies on schizophrenia. Prog Neurobiol 90:263–275

    CAS  PubMed  Google Scholar 

  • Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336(6195):170–173

    CAS  PubMed  Google Scholar 

  • Freund TF, Buzsáki GY (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    CAS  PubMed  Google Scholar 

  • Frotscher M, Léránth C (1985) Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J Comp Neurol 239:237–246

    CAS  PubMed  Google Scholar 

  • Frotscher M, Vid I, Bender R (2000) Evidence for the existence of non-GABAergic, cholinergic interneurons in the rodent hippocampus. Neuroscience 96:27–31

    CAS  PubMed  Google Scholar 

  • Fujii S, Ji Z, Morita N, Sumikawa K (1999) Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Res 846:137–143

    CAS  PubMed  Google Scholar 

  • Ge Y, Dong Z, Bagot RC, Howland JG, Phillips AG, Wong TP, Wang YT (2010) Hippocampal long-term depression is required for the consolidation of spatial memory. Proc Natl Acad Sci USA 107:16697–16702

    CAS  PubMed  Google Scholar 

  • Ghafari M, Falsafi SK, Szodorai E, Kim EJ, Li L, Hoger H, Berger J, Fuchs K, Sieghart W, Lubec G (2017) Formation of GABAA receptor complexes containing alpha1 and alpha5 subunits is paralleling a multiple T-maze learning task in mice. Brain Struct Funct 222(1):549–561

    CAS  PubMed  Google Scholar 

  • Ghosh R, Gilda JE, Gomes AV (2014) The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev Proteom 11:549–560

    CAS  Google Scholar 

  • Gritti I, Henny P, Galloni F, Mainville L, Mariotti M, Jones BE (2006) Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters. Neuroscience 143:1051–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Yakel JL (2011) Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 71:155–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hangya B, Borhegyi Z, Szilagyi N, Freund TF, Varga V (2009) GABAergic neurons of the medial septum lead the hippocampal network during theta activity. J Neurosci 29:8094–8102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson Z, Lu CB, Janzso G, Matto N, Mckinley CE, Yanagawa Y (2010) Distribution and role of Kv3.1b in neurons in the medial septum diagonal band complex. Neuroscience 166:952–969

    CAS  PubMed  Google Scholar 

  • Huh CY, Goutagny R, Williams S (2010) Glutamatergic neurons of the mouse medial septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: relevance for hippocampal theta rhythm. J Neurosci 30:15951–15961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter BE, de Fiebre CM, Papke RL, Kem WR, Meyer EM (1994) A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neurosci Lett 168:130–134

    CAS  PubMed  Google Scholar 

  • Kakegawa W, Tsuzuki K, Yoshida Y, Kameyama K, Ozawa S (2004) Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses. Eur J Neurosci 20(1):101–110

    PubMed  Google Scholar 

  • Kanju PM, Parameshwaran K, Sims-Robinson C, Uthayathas S, Josephson EM et al (2012) Selective cholinergic depletion in medial septum leads to impaired long term potentiation and glutamatergic synaptic currents in the hippocampus. PLoS ONE 7:e31073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Kim JM, Park SJ, Cai M, Liu X, Lee S et al (2012) GABAA receptor blockade enhances memory consolidation by increasing hippocampal BDNF levels. Neuropsychopharmacology 37:422–433

    CAS  PubMed  Google Scholar 

  • Kuryatov A, Luo J, Cooper J, Lindstrom J (2005) Nicotine acts as a pharmacological chaperone to up-regulate human alpha4beta2 acetylcholine receptors. Mol Pharmacol 68:1839–1851

    CAS  PubMed  Google Scholar 

  • Lamprea MR, Cardenas FP, Silveira R, Walsh TJ, Morat S (2003) Effects of septal cholinergic lesion on rat exploratory behavior in an open-field. Braz J Med Biol Res 36:233–238

    CAS  PubMed  Google Scholar 

  • Lecourtier L, de Vasconcelos AP, Leroux E, Cosquer B, Geiger K, Lithfous S et al (2011) Septohippocampal pathways contribute to system consolidation of a spatial memory: sequential implication of GABAergic and cholinergic neurons. Hippocampus 21:1277–1289

    CAS  PubMed  Google Scholar 

  • Lehmann O, Grottick AJ, Cassel JC, Higgins GA (2003) A double dissociation between serial reaction time and radial maze performance in rats subjected to 192 IgG-saporin lesions of the nucleus basalis and/or the septal region. Eur J Neurosci 18(3):651–666

    CAS  PubMed  Google Scholar 

  • Li R, Shen Y (2013) An old method facing a new challenge: re-visiting housekeeping proteins as internal reference control for neuroscience research. Life Sci 92:747–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 4:a005710

    PubMed  PubMed Central  Google Scholar 

  • Malikowska-Racia N, Podkowa A, Sałat K (2018) Phencyclidine and scopolamine for modeling amnesia in rodents: direct comparison with the use of BarnesMaze test and contextual fear conditioning test in mice. Neurotox Res 34:431–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manseau F, Danik M, Williams S (2005) A functional glutamatergic neurone network in the medial septum and diagonal band area. J Physiol 566(3):865–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meparishvili M, Nozadze M, Margvelani G, McCabe BJ, Solomonia RO (2015) A proteomic study of memory after imprinting in the domestic chick. Front Behav Neurosci 9:319

    PubMed  PubMed Central  Google Scholar 

  • Morgado-Bernal I (2011) Learning and memory consolidation: linking molecular and behavioral data. Neuroscience 176:12–1910

    CAS  PubMed  Google Scholar 

  • Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683

    CAS  PubMed  Google Scholar 

  • Nathan PJ, Watson J, Lund J, Davies CH, Peters G, Dodds CM, Swirski B, Lawrence P, Bentley GD, O'Neill BV et al (2013) The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int J Neuropsychopharmacol 16:721–731

    CAS  PubMed  Google Scholar 

  • Paban V, Jaffard M, Chambon C, Malafosse M, Alescio-Lautier B (2005) Time course of behavioral changes following basal forebrain cholinergic damage in rats: environmental enrichment as a therapeutic intervention. Neuroscience 132:13–32

    CAS  PubMed  Google Scholar 

  • Pang KC, Jiao X, Sinha S, Beck KD, Servatius RJ (2011) Damage of GABAergic neurons in the medial septum impairs spatial working memory and extinction of active avoidance: effects on proactive interference. Hippocampus 21:835–846

    CAS  PubMed  Google Scholar 

  • Pang KC, Nocera R, Secor AJ, Yoder RM (2001) GABAergic septohippocampal neurons are not necessary for spatial memory. Hippocampus 11:814–827

    CAS  PubMed  Google Scholar 

  • Parent MB, Baxter MG (2004) Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learn Mem 11:9–20

    PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Perry E, Martin-Ruiz C, Lee M, Griffiths M, Johnson M, Piggott M et al (2000) Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 393:215–222

    CAS  PubMed  Google Scholar 

  • Peterson GM, Shurlow CL (1992) Morphological evidence for a substance P projection from medial septum to hippocampus. Peptides 13(3):509–517

    CAS  PubMed  Google Scholar 

  • Rodrıґguez MJ, Robledo P, Andrade C, Mahy N (2005) In vivo co-ordinated interactions between inhibitory systems tocontrol glutamate-mediated hippocampal excitability. J Neurochem 95:651–661

    PubMed  Google Scholar 

  • Roland JJ, Savage LM (2009) The role of cholinergic and GABAergic medial septal/diagonal band cell populations in the emergence of diencephalic amnesia. Neuroscience 160(1):32–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rye DB, Wainer BH, Mesulam MM, Mufson EJ, Saper CB (1984) Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 13(3):627–643

    CAS  PubMed  Google Scholar 

  • Sadigh-Eteghad S, Majdi A, Talebi M, Mahmoudi J, Babri S (2015) Regulation of nicotinic acetylcholine receptors in Alzheimers disease: a possible role of chaperones. Eur J Pharmacol 755:34–41

    CAS  PubMed  Google Scholar 

  • Shen JX, Yakel JL (2012) Functional α7 nicotinic AChreceptors on astrocytes in rat hippocampal CA1 slices. J Mol Neurosci 48:14–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith HR, Pang KC (2005) Orexin-saporin lesions of the medial septum impair spatial memory. Neuroscience 132:261–271

    CAS  PubMed  Google Scholar 

  • Sotty F, Danik M, Manseau F, Laplante F, Quirion R, Williams S (2003) Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J Physiol 551(3):927–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Nguyen AQ, Nguyen JP, Le L, Saur D, Choi J, Callaway EM, Xu X (2014) Cell-type-specific circuit connectivity of hippocampal CA1 revealed through cre-dependent rabies tracing. Cell Rep 7(1):269–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31:18155–18165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamminga CA, Southcott S, Sacco C, Wagner AD, Ghose S (2012) Glutamate dysfunction in hippocampus: relevance of dentate gyrus and CA3 signaling. Schizophrenia Bull 38:927–935

    Google Scholar 

  • Winters BD, Dunnett SB (2004) Selective lesioning of the cholinergic septo-hippocampal pathway does not disrupt spatial short-term memory: a comparison with the effects of fimbria-fornix lesions. Behav Neurosci 118:546–562

    PubMed  Google Scholar 

  • Yi F, Catudio-Garrett E, Gábriel R, Wilhelm M, Erdelyi F, Szabo G, Deisseroth K, Lawrence J (2015) Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics and capacity for cholinergic modulation. Front Synaptic Neurosci 7:4

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The design of this study, analysis, interpretation of data and manuscript preparation were supported by the funding from the Shota Rustaveli National Science Foundation of Georgia (SRNSFG): Grant—13/10. The data collection for immunochemical studies was supported by the funding from SRNSFG: Grant YS15_2.3.1_51.

Author information

Authors and Affiliations

Authors

Contributions

MD and MB contributed to the conception and design; MD, MB and RS contributed to analysis and interpretation of data in the manuscript; GB, LK, NC, MC, and MK managed the data collection. Statistical analysis was done by MD, RS and MB. RS and TN revised the manuscript. All authors declare the responsibility for every aspect of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manana G. Dashniani.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Ethical approval

All experimental procedures were conducted in accordance with the European Communities Council Directive Guidelines for the care and use of laboratory animals (2010/63/EU—European Commission) and approved by the animal care and use committee at the I. Beritashvili Center of Experimental Biomedicine.

Consent for publication

All co-authors have agreed to the submission of the final manuscript.

Code availability

Not applicable.

Additional information

Communicated by Sreedharan Sajikumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashniani, M.G., Burjanadze, M.A., Chkhikvishvili, N.C. et al. Modulation of spatial memory and expression of hippocampal neurotransmitter receptors by selective lesion of medial septal cholinergic and GABAergic neurons. Exp Brain Res 238, 2385–2397 (2020). https://doi.org/10.1007/s00221-020-05889-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05889-6

Keywords

Navigation