Skip to main content

Advertisement

Log in

Enhanced bioremediation of diesel range hydrocarbons in soil using biochar made from organic wastes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Hydrocarbon contamination due to anthropogenic activities is a major environmental concern worldwide. The present study focuses on biochar prepared from fruit and vegetable waste and sewage sludge using a thermochemical approach and its application for the enhanced bioremediation (biostimulation and bioaugmentation) of diesel-polluted soil. The biochar was characterized using FTIR (Fourier-transform infrared spectroscopy), elemental analysis, surface area analysis, and pore analysis. Adsorption experiments showed that hydrocarbon degradation was attributed to biological processes rather than adsorption. The study found that various biochar amendments could significantly increase the rate of hydrocarbon biodegradation with removal efficiencies > 70%. Bioaugmentation using cow dung further improved the removal efficiency to 82%. Treatments showing the highest degree of removal efficiency indicated the presence of 27 different bacteria phyla with Proteobacteria and Actinobacteria as the most abundant phyla. The present study concludes that biochar amendments have great potential for enhancing the bioremediation of soils contaminated with diesel range hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agamuthu, P., Tan, Y., & Fauziah, S. (2013). Bioremediation of hydrocarbon contaminated soil using selected organic wastes. Procedia Environmental Sciences, 18, 694–702.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J., Yang, J. E., et al. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118(118), 536–544.

    Article  CAS  Google Scholar 

  • Ahsan, H. I. A., Munshi, A. B., Shaukat, S., Ansari, F. A., & Khan, M. F. (2011). Assessment of dissolved/dispersed aliphatic and aromatic hydrocarbon pollution in seawater at the Clifton beach on the Karachi coast. Journal of the Chemical Society of Pakistan, 33(2).

  • Alrumman, S. A., Standing, D., & Paton, G. I. (2015). Effects of hydrocarbon contamination on soil microbial community and enzyme activity. Journal of King Saud University - Science, 27(1), 31–41.

    Article  Google Scholar 

  • Asghar, H. N., Rafique, H. M., Zahir, Z. A., Khan, M. Y., Akhtar, M. J., Naveed, M., et al. (2016). Petroleum hydrocarbons-contaminated soils: remediation approaches. In: Soil science: agricultural and environmental prospectives (pp. 105–129). Springer.

  • Ashraf, W., Mihdhir, A., & Murrell, J. C. (1994). Bacterial oxidation of propane. FEMS Microbiology Letters, 122, 1–6.

    Article  CAS  Google Scholar 

  • Atlas, R. M. (1995). Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin, 31, 178–182.

    Article  CAS  Google Scholar 

  • Bahadure, S., Kalia, R., & Chavan, R. (2013). Comparative study of bioremediation of hydrocarbon fuels. International Journal of Biotechnology and Bioengineering Research, 4(7), 677–686.

    Google Scholar 

  • Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology & Biotechnology, 80(7), 723–736.

    Article  CAS  Google Scholar 

  • Bamidele, J., & Eshagberi, G. (2015). Effects of water soluble fractions of crude oil, diesel fuel and gasoline on Salvinia nymphellula (Desv). Journal of Natural Science Research, 5(14), 31–37.

    Google Scholar 

  • Caldwell, S. L., Laidler, J. R., Brewer, E. A., Eberly, J. O., Sandborgh, S. C., & Colwell, F. S. (2008). Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environmental Science & Technology, 42(18), 6791–6799.

    Article  CAS  Google Scholar 

  • Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428.

    Article  CAS  Google Scholar 

  • Chowdhury, Z. Z., Karim, M. Z., Ashraf, M. A., & Khalid, K. (2016). Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust. Bioresources, 11(2), 3356–3372.

    CAS  Google Scholar 

  • Das, D. D., Schnitzer, M., Monreal, C. M., & Mayer, P. M. (2009). Chemical composition of acid–base fractions separated from biooil derived by fast pyrolysis of chicken manure. Bioresource Technology, 100(24), 6524–6532.

    Article  CAS  Google Scholar 

  • De Figueredo, N. A., Costa, L. M. D., Melo, L. C. A., Siebeneichlerd, E. A., & Tronto, J. (2017). Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Revista Ciencia Agronomica, 48(3), 3–403.

    Article  Google Scholar 

  • Demirbas, A. (2004). Determination of calorific values of bio-chars and pyro-oils from pyrolysis of beech trunkbarks. Journal of Analytical and Applied Pyrolysis, 72(2), 215–219.

    Article  CAS  Google Scholar 

  • Domingues, R. R., Trugilho, P. F., Silva, C. A., De Melo, I. C. N. A., Melo, L. C. A., Magriotis, Z. M., et al. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS One, 12(5), e0176884.

    Article  CAS  Google Scholar 

  • Hammond, A. (2014). Use of biochar to enhance bioremediation of an Oxisol contaminated with diesel oil. University of Ghana.

  • Holliger, C., Gaspard, S., Glod, G., Heijman, C. G., Schumacher, W., Schwarzenbach, R. P., et al. (1997). Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiology Reviews, 20, 517–523.

    Article  CAS  Google Scholar 

  • Huang, Z., Sednek, C., Urynowicz, M. A., Guo, H., Wang, Q., Fallgren, P. H., et al. (2017). Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage. Nature Communications, 8(1), 568.

    Article  CAS  Google Scholar 

  • Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, M., Soja, G., Reichenauer, T. G., Zeshan, & Yousaf, S. (2018). Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, 153, 80–88.

    Article  CAS  Google Scholar 

  • Jiang, X., & Huang, J. (2016). Adsorption of Rhodamine B on two novel polar-modified post-cross-linked resins: equilibrium and kinetics. Journal of Colloid and Interface Science, 467, 230–238.

    Article  CAS  Google Scholar 

  • Kaczynska, G., Borowik, A., & Wyszkowska, J. (2015). Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water Air and Soil Pollution, 226(11), 372–372.

    Article  CAS  Google Scholar 

  • Khurshid, R., Sheikh, M. A., & Iqbal, S. (2008). Health of people working/living in the vicinity of an oil-polluted beach near Karachi, Pakistan. Eastern Mediterranean Health Journal, 14(1), 179–182.

    CAS  Google Scholar 

  • Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., & Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere, 168, 944–968.

    Article  CAS  Google Scholar 

  • Lawson, I., & Nartey, E. (2012). Microbial degradation potential of some Ghanaian soils contaminated with diesel oil. Agriculture and Biology Journal of North America, 3(1), 1–5.

    Article  CAS  Google Scholar 

  • Lu, H., Zhang, W., Wang, S., Zhuang, L., Yang, Y., & Qiu, R. (2013). Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 102, 137–143.

    Article  CAS  Google Scholar 

  • Mair, J., Schinner, F., & Margesin, R. (2013). A feasibility study on the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site: effects of temperature and biostimulation. Cold Regions Science and Technology, 96, 122–128.

    Article  Google Scholar 

  • Margesin, R., Labbe, D., Schinner, F., Greer, C. W., & Whyte, L. G. (2003). Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Applied and Environmental Microbiology, 69(6), 3085–3092.

    Article  CAS  Google Scholar 

  • Melo, L. C. A., Coscione, A. R., De Abreu, C. A., Puga, A. P., & De Camargo, O. A. (2013). Influence of pyrolysis temperature on cadmium and zinc sorption capacity of sugar cane straw-derived biochar. Bioresources, 8(4), 4992–5004.

    Article  Google Scholar 

  • Mills, A., Breuil, C., & Colwell, R. (1978). Enumeration of petroleum-degrading marine and estuarine microorganisms by the most probable number method. Canadian Journal of Microbiology, 24(5), 552–557.

    Article  Google Scholar 

  • Neethu, C. S., Saravanakumar, C., Purvaja, R., Robin, R. S., & Ramesh, R. (2019). Oil-spill triggered shift in indigenous microbial structure and functional dynamics in different marine environmental matrices. Scientific reports, 9(1), 1–13.

  • Nwaichi, E. O., Frac, M., Nwoha, P. A., & Eragbor, P. (2015). Enhanced phytoremediation of crude oil-polluted soil by four plant species: effect of inorganic and organic Bioaugumentation. International Journal of Phytoremediation, 17(12), 1253–1261.

    Article  CAS  Google Scholar 

  • Ogbonnaya, U., & Semple, K. T. (2013). Impact of biochar on organic contaminants in soil: a tool for mitigating risk? Agronomy, 3, 349–375.

    Article  CAS  Google Scholar 

  • Okeke, T. O. (2017). Bioremediation of hydrocarbon contaminated soil using selected organic wastes.

  • Okpokwasili, G. C., & Amanchukwu, S. C. (1988). Petroleum hydrocarbon degradation by Candida species. Environment International, 14(3), 243–247.

    Article  CAS  Google Scholar 

  • Oliveira, F. R., Patel, A. K., Jaisi, D. P., Adhikari, S., Lu, H., & Khanal, S. K. (2017). Environmental application of biochar: current status and perspectives. Bioresource Technology, 246, 110–122.

    Article  CAS  Google Scholar 

  • Pandian, K., Subramaniayan, P., Gnasekaran, P., & Chitraputhirapillai, S. (2016). Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Archives of Agronomy & Soil Science, 62(9), 1293–1310.

    Article  CAS  Google Scholar 

  • Pansu, D. M., & Gautheyrou, J. (2006). Handbook of soil analysis.

    Book  Google Scholar 

  • Phuong, H. T., Uddin, A., & Katou, Y. (2015). Characterization of biochar from pyrolysis of rice husk and rice straw. Journal of Biobased Materials and Bioenergy, 9(4), 439–446.

    Article  CAS  Google Scholar 

  • Qin, G., Gong, D., & Fan, M. (2013). Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. International Biodeterioration & Biodegradation, 85, 150–155.

    Article  CAS  Google Scholar 

  • Rittmann, B. E., Smets, B. F., & Stahl, D. A. (1990). Genetic capabilities of biological processes part 1. Environmental Science & Technology, 24, 23–30.

    Article  CAS  Google Scholar 

  • Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R., & Lehmann, J. (2010). Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental Science & Technology, 44(2), 827–833.

    Article  CAS  Google Scholar 

  • Rodriguez-Campos, J., Perales-Garcia, A., Hernandez-Carballo, J., Martinez-Rabelo, F., Hernández-Castellanos, B., Barois, I., & Contreras-Ramos, S. M. (2019). Bioremediation of soil contaminated by hydrocarbons with the combination of three technologies: bioaugmentation, phytoremediation, and vermiremediation. Journal of Soils and Sediments, 19(4), 1981–1994.

    Article  CAS  Google Scholar 

  • Rosales, E., Meijide, J., Pazos, M., & Sanroman, M. A. (2017). Challenges and recent advances in biochar as low-cost biosorbent: from batch assays to continuous-flow systems. Bioresource Technology, 246, 176–192.

    Article  CAS  Google Scholar 

  • Sabar, M. A., Ali, M., Fatima, N., Malik, A. Y., Jamal, A., Farman, M., et al. (2019). Degradation of low rank coal by Rhizopus oryzae isolated from a Pakistani coal mine and its enhanced releases of organic substances. Fuel, 253, 257–265.

    Article  CAS  Google Scholar 

  • Shahi, A., Aydin, S., Ince, B., & Ince, O. (2016). Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Ecotoxicology and Environmental Safety, 125, 153–160.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2003). Environmental soil chemistry (second edition).

  • Srivastava, M., Srivastava, A., Yadav, A., & Rawat, V. (2019). Source and control of hydrocarbon pollution. In: Hydrocarbon pollution and its effect on the environment. IntechOpen.

  • Tyagi, M., Fonseca, M. M. R. D., & De Carvalho, C. C. C. R. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2), 231–241.

    Article  CAS  Google Scholar 

  • Varjani, S. J., & Upasani, V. N. (2016). Core flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresource Technology, 220, 175–182.

    Article  CAS  Google Scholar 

  • Varjani, S. J., Rana, D. P., Jain, A. K., Bateja, S., & Upasani, V. N. (2015). Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. International Biodeterioration & Biodegradation, 103, 116–124.

    Article  CAS  Google Scholar 

  • Vega-Jarquin, C., ., Dendooven, L., Magaña-Plaza I, Thalasso F., Ramos-Valdivia A. (2010). Biotransformation of n-hexadecane by cell suspension cultures of Cinchona robusta and Dioscorea composita. Environmental Toxicology & Chemistry, 20(12), 2670–2675.

    Article  Google Scholar 

  • Verheijen, F., Jeffery, S., Bastos, A. C., Van Der Velde, M., & Diafas, I. (2010). Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR, 24099.

  • Wang, J., Zhan, X., Liang, J., Zhou, L., Lin, Y., & Wong, J. W. C. (2011). A novel method for the determination of total hydrocarbon in the hydrocarbon mixture-contaminated soil. Journal of Bioremediation and Biodegradation, 2011.

  • Wang, X., Si, J., Tan, H., Niu, Y., Xu, C., & Xu, T. (2012). Kinetics investigation on the combustion of waste capsicum stalks in Western China using thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 109(1), 403–412.

    Article  CAS  Google Scholar 

  • Wang, Y., Feng, J., Lin, Q., Lyu, X., Wang, X., & Wang, G. (2013). Effects of crude oil contamination on soil physical and chemical properties in Momoge wetland of China. Chinese Geographical Science, 23(6), 708–715.

    Article  Google Scholar 

  • Wang, Q., Guo, H., Wang, H., Urynowicz, M. A., Hu, A., Yu, C., et al. (2019). Enhanced production of secondary biogenic coalbed natural gas from a subbituminous coal treated by hydrogen peroxide and its geochemical and microbiological analyses. Fuel, 236, 1345–1355.

    Article  CAS  Google Scholar 

  • Williams, J. O., & Amaechi, V. C. (2017). Bioremediation of hydrocarbon contaminated soil using organic wastes as amendment. Current Studies in Comparative Education, Science and Technology, 4(2), 89–99.

  • Wu, W., Yang, M., Feng, Q., Mcgrouther, K., Wang, H., Lu, H., et al. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass & Bioenergy, 47, 268–276.

    Article  CAS  Google Scholar 

  • Yang, T., & Lua, A. C. (2003). Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. Journal of Colloid and Interface Science, 267(2), 408–417.

    Article  CAS  Google Scholar 

  • Yuan, J., Xu, R., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497.

    Article  CAS  Google Scholar 

  • Zhang, J. H., & Zeng, J. H. (2007). Sorption of diesel oil and its influence factor on Beijing soils. Research of Environmental Science, 20, 19–23. (in Chinese).

  • Zhang, W., Zheng, J., Zheng, P., Tsang, D. C. W., & Qiu, R. (2015). Sludge-derived biochar for arsenic(III) immobilization: effects of solution chemistry on sorption behavior. Journal of Environmental Quality, 44(4), 1119–1126.

    Article  CAS  Google Scholar 

  • Zhu, L. H., Krens, F. A., Smith, M. A., Li, X., Qi, W., Van Loo, E. N., et al. (2016). Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Scientific Reports, 6(1), 22181–22181.

    Article  CAS  Google Scholar 

  • Zielinska, A., Oleszczuk, P., Charmas, B., Skubiszewskazieba, J., & Pasiecznapatkowska, S. (2015). Effect of sewage sludge properties on the biochar characteristic. Journal of Analytical and Applied Pyrolysis, 112, 201–213.

    Article  CAS  Google Scholar 

  • Zornoza, R., Morenobarriga, F., Acosta, J. A., Munoz, M. A., & Faz, A. (2016). Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere, 144, 122–130.

    Article  CAS  Google Scholar 

  • Zuo, W., Chen, C., Cui, H., & Fu, M. (2017). Enhanced removal of Cd(II) from aqueous solution using CaCO3 nanoparticle modified sewage sludge biochar. RSC Advances, 7(26), 16238–16243.

    Article  CAS  Google Scholar 

Download references

Availability of data and material

Data supporting the findings in this study are available within the article and its Supplementary Information files. Extra data are available from the corresponding author on request.

Funding

Funds for the study were provided by the Higher Education Commission, Islamabad (Pakistan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Ishtiaq Ali or Zaixing Huang.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, S., Ali, M.I., Farooq, U. et al. Enhanced bioremediation of diesel range hydrocarbons in soil using biochar made from organic wastes. Environ Monit Assess 192, 569 (2020). https://doi.org/10.1007/s10661-020-08540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08540-7

Keywords

Navigation