Skip to main content
Log in

Impact of Molecular Testing on the Management of Indeterminate Thyroid Nodules Among Western and Asian Countries: a Systematic Review and Meta-analysis

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Molecular testing has a potential to improve the management of patients with indeterminate thyroid nodules considered for surgery. This study examined the influence of molecular tests on the treatment of indeterminate nodules, particularly the differences between Western and Asian countries. Electronic databases including PubMed and Web of Science were searched for relevant articles from 2010 to March 2019. We computed meta-analysis of proportion and their 95% confidence intervals (CIs) utilizing the random-effect model. We used independent samples t test to compare the resection rate (RR), rate of malignancy (ROM), rate of preoperative molecular testing (RMT), and rate of positive test (RP) between subgroups. We included a total of 34 studies with 7976 indeterminate nodules. The multigene panel testing methods were exclusively used in the USA. Compared with the non-molecular era, molecular testing was associated with a significantly increased ROM (47.9% versus 32.1%; p = 0.001). The ROM of indeterminate nodules in Asian institutes was significantly higher than that in Western countries (75.3% versus 36.6%; p < 0.001, respectively). Institutes employing single-gene tests achieved a higher ROM (59.8% versus 37.9%; p = 0.013). Molecular testing is a promising method to tailor the clinical management for indeterminate thyroid FNA. Certain differences in routine thyroid cytopathology practice among the West and the East are still present. The combination of molecular testing and active surveillance enhances the accuracy of case selection for surgery in Asian countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cibas ES, Ali SZ, Conference NCITFSotS (2009) The Bethesda System For Reporting Thyroid Cytopathology. Am J Clin Pathol 132 (5):658–665. https://doi.org/10.1309/AJCPPHLWMI3JV4LA

    Article  PubMed  Google Scholar 

  2. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW (2012) The Bethesda System for Reporting Thyroid Cytopathology: a meta-analysis. Acta Cytol 56 (4):333–339. https://doi.org/10.1159/000339959

    Article  PubMed  Google Scholar 

  3. Syed Z. Ali ESC (2018) The Bethesda System for Reporting Thyroid Cytopathology. 2nd edn. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-60570-8

  4. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L (2016) 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26 (1):1–133. https://doi.org/10.1089/thy.2015.0020

    Article  PubMed  PubMed Central  Google Scholar 

  5. Paschke R. CS, Crescenzi A., Jarzab B., Musholt T.J., Sobrinho Simoes M. (2017) European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. European Thyroid Journal 6:115–129

    Article  PubMed  PubMed Central  Google Scholar 

  6. Perros P, Boelaert K, Colley S, Evans C, Evans RM, Gerrard Ba G, Gilbert J, Harrison B, Johnson SJ, Giles TE, Moss L, Lewington V, Newbold K, Taylor J, Thakker RV, Watkinson J, Williams GR (2014) Guidelines for the management of thyroid cancer. Clin Endocrinol (Oxf) 81 (s1):1–122. https://doi.org/10.1111/cen.12515

    Article  CAS  Google Scholar 

  7. Negro R, Attanasio R, Grimaldi F, Frasoldati A, Guglielmi R, Papini E (2017) A 2016 Italian Survey about Guidelines and Clinical Management of Thyroid Nodules. Eur Thyroid J 6 (2):75–81. https://doi.org/10.1159/000453032

    Article  PubMed  Google Scholar 

  8. Cibas ES, Ali SZ (2017) The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 27 (11):1341–1346. https://doi.org/10.1089/thy.2017.0500

    Article  PubMed  Google Scholar 

  9. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, Yip L, Seethala RR, Tublin ME, Stang MT, Coyne C, Johnson JT, Stewart AF, Nikiforova MN (2011) Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 96 (11):3390–3397. https://doi.org/10.1210/jc.2011-1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alexander EK, Schorr M, Klopper J, Kim C, Sipos J, Nabhan F, Parker C, Steward DL, Mandel SJ, Haugen BR (2014) Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab 99 (1):119–125. https://doi.org/10.1210/jc.2013-2482

    Article  CAS  PubMed  Google Scholar 

  11. Vuong HG, Ngo HTT, Bychkov A, Jung CK, Vu TH, Lu KB, Kakudo K, Kondo T (2019) Differences in surgical resection rate and risk of malignancy in thyroid cytopathology practice between Western and Asian countries: A systematic review and meta-analysis. Cancer Cytopathol. https://doi.org/10.1002/cncy.22228

  12. Poller DN, Bongiovanni M, Trimboli P (2020) Risk of malignancy in the various categories of the UK Royal College of Pathologists Thy terminology for thyroid FNA cytology: A systematic review and meta-analysis. Cancer Cytopathol 128 (1):36–42. https://doi.org/10.1002/cncy.22201

    Article  PubMed  Google Scholar 

  13. Trimboli P, Crescenzi A, Castellana M, Giorgino F, Giovanella L, Bongiovanni M (2019) Italian consensus for the classification and reporting of thyroid cytology: the risk of malignancy between indeterminate lesions at low or high risk. A systematic review and meta-analysis. Endocrine 63 (3):430–438. https://doi.org/10.1007/s12020-018-1825-8

    Article  CAS  PubMed  Google Scholar 

  14. Moher D, Liberati A, Tetzlaff J, Altman D, PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6 (7):e1000097

  15. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, Barletta JA, Wenig BM, Al Ghuzlan A, Kakudo K, Giordano TJ, Alves VA, Khanafshar E, Asa SL, El-Naggar AK, Gooding WE, Hodak SP, Lloyd RV, Maytal G, Mete O, Nikiforova MN, Nose V, Papotti M, Poller DN, Sadow PM, Tischler AS, Tuttle RM, Wall KB, LiVolsi VA, Randolph GW, Ghossein RA (2016) Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol 2 (8):1023–1029. https://doi.org/10.1001/jamaoncol.2016.0386

    Article  PubMed  PubMed Central  Google Scholar 

  16. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21 (11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  17. National Heart L, and Blood Institute (NHLBI) (2014) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Available at: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools.

  18. Abeykoon JP, Mueller L, Dong F, Chintakuntlawar AV, Paludo J, Mortada R (2016) The Effect of Implementing Gene Expression Classifier on Outcomes of Thyroid Nodules with Indeterminate Cytology. Horm Cancer 7 (4):272–278. https://doi.org/10.1007/s12672-016-0263-4

    Article  CAS  PubMed  Google Scholar 

  19. Adeniran AJ, Hui P, Chhieng DC, Prasad ML, Schofield K, Theoharis C (2011) BRAF mutation testing of thyroid fine-needle aspiration specimens enhances the predictability of malignancy in thyroid follicular lesions of undetermined significance. Acta Cytol 55 (6):570–575. https://doi.org/10.1159/000333274

    Article  CAS  PubMed  Google Scholar 

  20. Al-Qurayshi Z, Deniwar A, Thethi T, Mallik T, Srivastav S, Murad F, Bhatia P, Moroz K, Sholl AB, Kandil E (2017) Association of Malignancy Prevalence With Test Properties and Performance of the Gene Expression Classifier in Indeterminate Thyroid Nodules. JAMA Otolaryngol Head Neck Surg 143 (4):403–408. https://doi.org/10.1001/jamaoto.2016.3526

    Article  PubMed  Google Scholar 

  21. Bellevicine C, Sgariglia R, Migliatico I, Vigliar E, D’Anna M, Nacchio MA, Serra N, Malapelle U, Bongiovanni M, Troncone G (2018) Different qualifiers of AUS/FLUS thyroid FNA have distinct BRAF, RAS, RET/PTC, and PAX8/PPARg alterations. Cancer Cytopathol 126 (5):317–325. https://doi.org/10.1002/cncy.21984

    Article  CAS  PubMed  Google Scholar 

  22. Deaver KE, Haugen BR, Pozdeyev N, Marshall CB (2018) Outcomes of Bethesda categories III and IV thyroid nodules over 5 years and performance of the Afirma gene expression classifier: A single-institution study. Clin Endocrinol (Oxf). https://doi.org/10.1111/cen.13747

  23. Endo M, Nabhan F, Porter K, Roll K, Shirley LA, Azaryan I, Tonkovich D, Perlick J, Ryan LE, Khawaja R, Meng S, Phay JE, Ringel MD, Sipos JA (2019) Afirma Gene Sequencing Classifier Compared with Gene Expression Classifier in Indeterminate Thyroid Nodules. Thyroid 29 (8):1115–1124. https://doi.org/10.1089/thy.2018.0733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hang JF, Westra WH, Zhou AG, Cooper DS, Ali SZ (2018) The impact of noninvasive follicular thyroid neoplasm with papillary-like nuclear features on the rate of malignancy for atypia of undetermined significance subcategories. Cancer Cytopathol 126 (5):309–316. https://doi.org/10.1002/cncy.21981

    Article  PubMed  Google Scholar 

  25. Harrell RM, Bimston DN (2014) Surgical utility of Afirma: effects of high cancer prevalence and oncocytic cell types in patients with indeterminate thyroid cytology. Endocr Pract 20 (4):364–369. https://doi.org/10.4158/EP13330.OR

    Article  PubMed  Google Scholar 

  26. Jug RC, Datto MB, Jiang XS (2018) Molecular testing for indeterminate thyroid nodules: Performance of the Afirma gene expression classifier and ThyroSeq panel. Cancer Cytopathol 126 (7):471–480. https://doi.org/10.1002/cncy.21993

    Article  CAS  PubMed  Google Scholar 

  27. Kay-Rivest E, Tibbo J, Bouhabel S, Tamilia M, Leboeuf R, Forest VI, Hier MP, Savoury L, Payne RJ (2017) The first Canadian experience with the Afirma(R) gene expression classifier test. J Otolaryngol Head Neck Surg 46 (1):25. https://doi.org/10.1186/s40463-017-0201-7

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kowalska A, Kowalik A, Palyga I, Walczyk A, Gasior-Perczak D, Kopczynski J, Lizis-Kolus K, Szyska-Skrobot D, Hurej S, Radowicz-Chil A, Chodurska R, Wypiorkiewicz E, Chlopek M, Nowak E, Niemyska K, Gozdz S (2016) The usefulness of determining the presence of BRAF V600E mutation in fine-needle aspiration cytology in indeterminate cytological results. Endokrynol Pol 67 (1):41–47. https://doi.org/10.5603/ep.2016.0006

    Article  CAS  PubMed  Google Scholar 

  29. Marti JL, Avadhani V, Donatelli LA, Niyogi S, Wang B, Wong RJ, Shaha AR, Ghossein RA, Lin O, Morris LG, Ho AS (2015) Wide Inter-institutional Variation in Performance of a Molecular Classifier for Indeterminate Thyroid Nodules. Ann Surg Oncol 22 (12):3996–4001. https://doi.org/10.1245/s10434-015-4486-3

    Article  PubMed  PubMed Central  Google Scholar 

  30. McIver B, Castro MR, Morris JC, Bernet V, Smallridge R, Henry M, Kosok L, Reddi H (2014) An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 99 (11):4069–4077. https://doi.org/10.1210/jc.2013-3584

    Article  CAS  PubMed  Google Scholar 

  31. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, Gooding WE, LeBeau SO, Ohori NP, Seethala RR, Tublin ME, Yip L, Nikiforova MN (2015) Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid 25 (11):1217–1223. https://doi.org/10.1089/thy.2015.0305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohori NP, Landau MS, Carty SE, Yip L, LeBeau SO, Manroa P, Seethala RR, Schoedel KE, Nikiforova MN, Nikiforov YE (2019) Benign call rate and molecular test result distribution of ThyroSeq v3. Cancer Cytopathol 127 (3):161–168. https://doi.org/10.1002/cncy.22088

    Article  CAS  PubMed  Google Scholar 

  33. Rossi M, Buratto M, Bruni S, Filieri C, Tagliati F, Trasforini G, Rossi R, Beccati MD, Degli Uberti EC, Zatelli MC (2012) Role of ultrasonographic/clinical profile, cytology, and BRAF V600E mutation evaluation in thyroid nodule screening for malignancy: a prospective study. J Clin Endocrinol Metab 97 (7):2354–2361. https://doi.org/10.1210/jc.2011-3494

    Article  CAS  PubMed  Google Scholar 

  34. Sacks WL, Bose S, Zumsteg ZS, Wong R, Shiao SL, Braunstein GD, Ho AS (2016) Impact of Afirma gene expression classifier on cytopathology diagnosis and rate of thyroidectomy. Cancer Cytopathol 124 (10):722–728. https://doi.org/10.1002/cncy.21749

    Article  PubMed  Google Scholar 

  35. Samulski TD, LiVolsi VA, Wong LQ, Baloch Z (2016) Usage trends and performance characteristics of a “gene expression classifier” in the management of thyroid nodules: An institutional experience. Diagn Cytopathol 44 (11):867–873. https://doi.org/10.1002/dc.23559

    Article  PubMed  Google Scholar 

  36. Taye A, Gurciullo D, Miles BA, Gupta A, Owen RP, Inabnet WB, 3rd, Beyda JN, Marti JL (2018) Clinical performance of a next-generation sequencing assay (ThyroSeq v2) in the evaluation of indeterminate thyroid nodules. Surgery 163 (1):97–103. https://doi.org/10.1016/j.surg.2017.07.032

    Article  PubMed  Google Scholar 

  37. Valderrabano P, Khazai L, Leon ME, Thompson ZJ, Ma Z, Chung CH, Hallanger-Johnson JE, Otto KJ, Rogers KD, Centeno BA, McIver B (2017) Evaluation of ThyroSeq v2 performance in thyroid nodules with indeterminate cytology. Endocr Relat Cancer 24 (3):127–136. https://doi.org/10.1530/erc-16-0512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Witt RL (2016) Outcome of thyroid gene expression classifier testing in clinical practice. Laryngoscope 126 (2):524–527. https://doi.org/10.1002/lary.25607

    Article  CAS  PubMed  Google Scholar 

  39. Yang SE, Sullivan PS, Zhang J, Govind R, Levin MR, Rao JY, Moatamed NA (2016) Has Afirma gene expression classifier testing refined the indeterminate thyroid category in cytology? Cancer Cytopathol 124 (2):100–109. https://doi.org/10.1002/cncy.21624

    Article  PubMed  Google Scholar 

  40. Hemalatha R, Pai R, Manipadam MT, Rebekah G, Cherian AJ, Abraham DT, Rajaratnam S, Thomas N, Ramakant P, Jacob PM (2018) Presurgical Screening of Fine Needle Aspirates from Thyroid Nodules for BRAF Mutations: A Prospective Single Center Experience. Indian J Endocrinol Metab 22 (6):785–792. https://doi.org/10.4103/ijem.IJEM_126_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hwang TS, Kim WY, Han HS, Lim SD, Kim WS, Yoo YB, Park KS, Oh SY, Kim SK, Yang JH (2015) Preoperative RAS mutational analysis is of great value in predicting follicular variant of papillary thyroid carcinoma. Biomed Res Int 2015:697068. https://doi.org/10.1155/2015/697068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hyeon J, Ahn S, Shin JH, Oh YL (2014) The prediction of malignant risk in the category “atypia of undetermined significance/follicular lesion of undetermined significance” of the Bethesda System for Reporting Thyroid Cytopathology using subcategorization and BRAF mutation results. Cancer Cytopathol 122 (5):368–376. https://doi.org/10.1002/cncy.21396

    Article  CAS  PubMed  Google Scholar 

  43. Kang G, Cho EY, Shin JH, Chung JH, Kim JW, Oh YL (2012) Role of BRAFV600E mutation analysis and second cytologic review of fine-needle aspiration for evaluating thyroid nodule. Cancer Cytopathol 120 (1):44–51. https://doi.org/10.1002/cncy.20179

    Article  CAS  PubMed  Google Scholar 

  44. Kim SK, Hwang TS, Yoo YB, Han HS, Kim DL, Song KH, Lim SD, Kim WS, Paik NS (2011) Surgical results of thyroid nodules according to a management guideline based on the BRAF(V600E) mutation status. J Clin Endocrinol Metab 96 (3):658–664. https://doi.org/10.1210/jc.2010-1082

    Article  CAS  PubMed  Google Scholar 

  45. Lee S, Shin JH, Oh YL, Hahn SY (2016) Subcategorization of Bethesda System Category III by Ultrasonography. Thyroid 26 (6):836–842. https://doi.org/10.1089/thy.2015.0637

    Article  PubMed  Google Scholar 

  46. Park HJ, Moon JH, Yom CK, Kim KH, Choi JY, Choi SI, Ahn SH, Jeong WJ, Lee WW, Park SY (2014) Thyroid “atypia of undetermined significance” with nuclear atypia has high rates of malignancy and BRAF mutation. Cancer Cytopathol 122 (7):512–520. https://doi.org/10.1002/cncy.21411

    Article  CAS  PubMed  Google Scholar 

  47. Park SJ, Sun JY, Hong K, Kwak JY, Kim EK, Chung WY, Choi JR (2013) Application of BRAF, NRAS, KRAS mutations as markers for the detection of papillary thyroid cancer from FNAB specimens by pyrosequencing analysis. Clin Chem Lab Med 51 (8):1673–1680. https://doi.org/10.1515/cclm-2012-0375

    Article  CAS  PubMed  Google Scholar 

  48. Zhang YZ, Xu T, Cui D, Li X, Yao Q, Gong HY, Liu XY, Chen HH, Jiang L, Ye XH, Zhang ZH, Shen MP, Duan Y, Yang T, Wu XH (2015) Value of TIRADS, BSRTC and FNA-BRAF V600E mutation analysis in differentiating high-risk thyroid nodules. Sci Rep 5:16927. https://doi.org/10.1038/srep16927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vargas-Salas S, Martinez JR, Urra S, Dominguez JM, Mena N, Uslar T, Lagos M, Henriquez M, Gonzalez HE (2018) Genetic testing for indeterminate thyroid cytology: review and meta-analysis. Endocr Relat Cancer 25 (3):R163–r177. https://doi.org/10.1530/erc-17-0405

    Article  PubMed  Google Scholar 

  50. Valderrabano P, Hallanger-Johnson JE, Thapa R, Wang X, McIver B (2019) Comparison of Postmarketing Findings vs the Initial Clinical Validation Findings of a Thyroid Nodule Gene Expression Classifier: A Systematic Review and Meta-analysis. JAMA Otolaryngol Head Neck Surg. https://doi.org/10.1001/jamaoto.2019.1449

  51. Hassell LA, Gillies EM, Dunn ST (2012) Cytologic and molecular diagnosis of thyroid cancers: is it time for routine reflex testing? Cancer Cytopathol 120 (1):7–17. https://doi.org/10.1002/cncy.20186

    Article  CAS  PubMed  Google Scholar 

  52. Satoh S, Yamashita H, Kakudo K (2017) Thyroid Cytology: The Japanese System and Experience at Yamashita Thyroid Hospital. J Pathol Transl Med 51 (6):548–554. https://doi.org/10.4132/jptm.2017.09.29

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kakudo K, Higuchi M, Hirokawa M, Satoh S, Jung CK, Bychkov A (2017) Thyroid FNA cytology in Asian practice-Active surveillance for indeterminate thyroid nodules reduces overtreatment of thyroid carcinomas. Cytopathology 28 (6):455–466. https://doi.org/10.1111/cyt.12491

    Article  CAS  PubMed  Google Scholar 

  54. Hirokawa M, Higuchi M, Suzuki A, Hayashi T, Kuma S, Miyauchi A (2017) Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a single-institutional experience in Japan. Endocr J 64 (12):1149–1155. https://doi.org/10.1507/endocrj.EJ17-0214

    Article  PubMed  Google Scholar 

  55. Yip L, Farris C, Kabaker AS, Hodak SP, Nikiforova MN, McCoy KL, Stang MT, Smith KJ, Nikiforov YE, Carty SE (2012) Cost impact of molecular testing for indeterminate thyroid nodule fine-needle aspiration biopsies. J Clin Endocrinol Metab 97 (6):1905–1912. https://doi.org/10.1210/jc.2011-3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li H, Robinson KA, Anton B, Saldanha IJ, Ladenson PW (2011) Cost-effectiveness of a novel molecular test for cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 96 (11):E1719–1726. https://doi.org/10.1210/jc.2011-0459

    Article  CAS  PubMed  Google Scholar 

  57. Oda H, Miyauchi A, Ito Y, Sasai H, Masuoka H, Yabuta T, Fukushima M, Higashiyama T, Kihara M, Kobayashi K, Miya A (2017) Comparison of the costs of active surveillance and immediate surgery in the management of low-risk papillary microcarcinoma of the thyroid. Endocr J 64 (1):59–64. https://doi.org/10.1507/endocrj.EJ16-0381

    Article  PubMed  Google Scholar 

  58. Lang BH, Wong CK (2015) A cost-effectiveness comparison between early surgery and non-surgical approach for incidental papillary thyroid microcarcinoma. Eur J Endocrinol 173 (3):367–375. https://doi.org/10.1530/eje-15-0454

    Article  CAS  PubMed  Google Scholar 

  59. Vuong HG, Altibi AMA, Duong UNP, Hassell L (2017) Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-A meta-analysis. Clin Endocrinol (Oxf) 87 (5):411–417. https://doi.org/10.1111/cen.13413

    Article  CAS  Google Scholar 

  60. Vuong HG, Duong UN, Altibi AM, Ngo HT, Pham TQ, Tran HM, Gandolfi G, Hassell L (2017) A meta-analysis of prognostic roles of molecular markers in papillary thyroid carcinoma. Endocr Connect 6 (3):R8–r17. https://doi.org/10.1530/ec-17-0010

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vuong HG, Altibi AM, Abdelhamid AH, Ngoc PU, Quan VD, Tantawi MY, Elfil M, Vu TL, Elgebaly A, Oishi N, Nakazawa T, Hirayama K, Katoh R, Huy NT, Kondo T (2017) The changing characteristics and molecular profiles of papillary thyroid carcinoma over time: a systematic review. Oncotarget 8 (6):10637–10649. https://doi.org/10.18632/oncotarget.12885

    Article  PubMed  Google Scholar 

  62. Roth MY, Witt RL, Steward DL (2018) Molecular testing for thyroid nodules: Review and current state. Cancer 124 (5):888–898. https://doi.org/10.1002/cncr.30708

    Article  PubMed  Google Scholar 

  63. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68 (6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  64. Miyauchi A, Ito Y, Oda H (2018) Insights into the Management of Papillary Microcarcinoma of the Thyroid. Thyroid 28 (1):23–31. https://doi.org/10.1089/thy.2017.0227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim TY, Shong YK (2017) Active Surveillance of Papillary Thyroid Microcarcinoma: A Mini-Review from Korea. Endocrinol Metab (Seoul) 32 (4):399–406. https://doi.org/10.3803/EnM.2017.32.4.399

    Article  Google Scholar 

  66. Lyu H, Xu T, Brotman D, Mayer-Blackwell B, Cooper M, Daniel M, Wick EC, Saini V, Brownlee S, Makary MA (2017) Overtreatment in the United States. PLoS One 12 (9):e0181970-e0181970. https://doi.org/10.1371/journal.pone.0181970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kakudo K, Bychkov A, Abelardo A, Keelawat S, Kumarasinghe P (2019) Malpractice Climate Is a Key Difference in Thyroid Pathology Practice Between North America and the Rest of the World. Arch Pathol Lab Med 143 (10):1171. https://doi.org/10.5858/arpa.2019-0228-LE

    Article  PubMed  Google Scholar 

  68. Vuong HG, Tran TTK, Bychkov A, Jung CK, Nakazawa T, Kakudo K, Katoh R, Kondo T (2019) Clinical impact of non-invasive follicular thyroid neoplasm with papillary-like nuclear features on the risk of malignancy in the Bethesda system for reporting thyroid cytopathology: a meta-analysis of 14,153 resected thyroid nodules. Endocr Pract 25 (5):491–502. https://doi.org/10.4158/ep-2018-0506

    Article  PubMed  Google Scholar 

  69. Bongiovanni M, Faquin WC, Giovanella L, Durante C, Kopp P, Trimboli P (2019) Impact of non-invasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) on risk of malignancy in patients undergoing lobectomy/thyroidectomy for suspected malignancy or malignant fine-needle aspiration cytology findings: a systematic review and meta-analysis. Eur J Endocrinol 181 (4):389–396. https://doi.org/10.1530/eje-19-0223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bongiovanni M, Giovanella L, Romanelli F, Trimboli P (2019) Cytological Diagnoses Associated with Noninvasive Follicular Thyroid Neoplasms with Papillary-Like Nuclear Features According to the Bethesda System for Reporting Thyroid Cytopathology: A Systematic Review and Meta-Analysis. Thyroid 29 (2):222–228. https://doi.org/10.1089/thy.2018.0394

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HTTN: data curation, formal analysis, investigation, methodology, software, validation, writing-original draft, and editing.

TPXN: data curation, formal analysis, investigation, methodology, validation, writing-review, and editing.

THV: data curation, formal analysis, investigation, writing-review, and editing.

CKJ: data curation, formal analysis, investigation, writing-review, and editing.

LH: investigation, methodology, software, validation, writing-review, and editing.

KK: conceptualization, investigation, methodology, validation, writing-review, and editing.

HGV: conceptualization, data curation, formal analysis, investigation, methodology, project administration, software, validation, supervision, writing—original draft, writing–review, and editing.

Corresponding author

Correspondence to Huy Gia Vuong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Statement

The paper is exempted from ethical committee approval since this is a systematic review and meta–analysis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, H.T.T., Nguyen, T.P.X., Vu, T.H. et al. Impact of Molecular Testing on the Management of Indeterminate Thyroid Nodules Among Western and Asian Countries: a Systematic Review and Meta-analysis. Endocr Pathol 32, 269–279 (2021). https://doi.org/10.1007/s12022-020-09643-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-020-09643-0

Keywords

Navigation