Skip to main content
Log in

Electrocatalytic Oxidation of Dibenzothiophene and 4,6-Dimethyldibenzothiophene at Gold-Polyaniline (Au-PANI) Composite Electrodes

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this study, glassy carbon electrodes modified with gold-polyaniline (Au-PANI) were evaluated for the ability to electrochemically oxidize dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT). Au-PANI was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron micrograph (TEM), and scanning electron micrograph (SEM). The role of nitrogen groups of PANI on the formation of Au-PANI was shown by FT-IR. XPS confirmed the various electronic states and environment of oxygen, nitrogen, gold, and carbon in Au-PANI film. TEM results indicated that Au particle size is in the range of 3.50–6.97 nm, while SEM results confirmed the heterogeneous nature of PANI and Au-PANI surfaces. In this study, density functional theory (DFT) with the B3LYP functional and 6-311++G** basis set was used to examine the electronic properties of DBT/4,6-DMDBT onto the surface of PANI nanocomposite. Electrochemical tests indicate that the Au-PANI exhibits high catalytic activity for DBT and 4,6-DMDBT electrooxidation. Oxidation products such as DBTO = dibenzothiophene sulfoxide; 4,6-DMDBTO = 4,6-dimethydibenzothiophene sulfoxide; DBTO2 = dibenzothiophene sulfone; and 4,6-DMDBTO2 = 4,6-dimethydibenzothiophene sulfone were confirmed by means of gas chromatograph coupled to mass spectrometer (GC-MS), 1H, and 13C NMR.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. C.S.E. Hsu, in Analytical advances for hydrocarbon research in Modern Analytical Chemistry, ed. by C. S. Hsu.(Springer-Verlag US, 2003), p. 463

  2. J.G.E. Speight, The desulfurization of heavy oils and residua, 2nd edn. Ed; ISBN 9780824789213 (CRC Press, 1999), p. 480

  3. A.S. Ogunlaja, O.S. Alade, E.O. Odebunmi, A. Majavu, N. Torto, Z.R. Tshentu, The ratios of vanadium-to-nickel and phenanthrene-to-dibenzothiophene as means of identifying petroleum source and classification of Nigeria crude oils. Pet. Sci. Technol. 32(19), 2283–2291 (2014)

    CAS  Google Scholar 

  4. H. Hua, J. Wang, H. Kong, J. Liu, X. Lu, G. Xu, Analysis of sulfur-containing compounds in crude oils by comprehensive two-dimensional gas chromatography with sulfur chemiluminescence detection. J. Sep. Sci. 27(9), 691–698 (2004)

    CAS  Google Scholar 

  5. J.L. Garcia-Gutierrez, G.A. Fuentes, M.E. Hernandez-Teran, F. Murrieta, J. Navarrete, F. Jimenez-Cruz, Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3. Appl. Catal. A 305(1), 15–20 (2006)

    CAS  Google Scholar 

  6. V. Lam, G. Li, C. Song, J. Chen, C. Fairbridge, R. Hui, J. Zhang, A review of electrochemical desulfurization technologies for fossil fuels. Fuel Process. Technol. 98, 30–38 (2012)

    CAS  Google Scholar 

  7. S. Lalvani, M. Pata, R.W. Coughlin, Sulphur removal from coal by electrolysis. Fuel 62(4), 427–437 (1983)

    CAS  Google Scholar 

  8. D. Zhao, Z. Sun, F. Li, R. Liu, H. Shan, Oxidative desulfurization of thiophene catalyzed by (C4H9)4NBr·2C6H11NO coordinated ionic liquid. Energy Fuel 22(5), 3065–3069 (2008)

    CAS  Google Scholar 

  9. W. Wang, S. Wang, H. Liu, Z. Wang, Desulfurization of gasoline by a new method of electrochemical catalytic oxidation. Fuel 86(17–18), 2747–2753 (2007)

    CAS  Google Scholar 

  10. D. Vasudevan, S.S. Vaghela, G. Ramachandraiah, Electrosynthesis of dimethylsulfone from dimethylsulfoxide at a dimensionally stable anode. J. Appl. Electrochem. 30(11), 1299–1302 (2000)

    CAS  Google Scholar 

  11. A. de León, J. García-Antón, J. Ros, G. Guirado, I. Gallardo, J. Pons, Environmentally benign and selective synthesis of hybrid pyrazole sulfoxide and sulfone ligands. New J. Chem. 37(7), 1889–1894 (2013)

    Google Scholar 

  12. A.S. Potapov, N.P. Chernova, V.D. Ogorodnikov, T.V. Petrenko, A.I. Khlebnikov, Synthesis and oxidation of some azole-containing thioethers. Beilstein J. Org. Chem. 7(1), 1526–1532 (2011)

    CAS  Google Scholar 

  13. W.N. Abdullah, W.A. Bakar, R. Ali, Z. Embong, Oxidative desulfurization of commercial diesel catalyzed by tert-butyl hydroperoxide polymolybdate on alumina: optimization by Box-Behnken design. Clean Techn. Environ. Policy 17(2), 433–441 (2015)

    Google Scholar 

  14. V.V. Prasad, K.E. Jeong, H.J. Chae, C.U. Kim, S.Y. Jeong, Oxidative desulfurization of 4,6-dimethyl dibenzothiophene and light cycle oil over supported molybdenum oxide catalysts. Catal. Commun. 9(10), 1966–1969 (2008)

    CAS  Google Scholar 

  15. E. Torres-García, A. Galano, G. Rodriguez-Gattorno, Oxidative desulfurization (ODS) of organosulfur compounds catalyzed by peroxo-metallate complexes of WOx–ZrO2: thermochemical, structural, and reactivity indexes analyses. J. Catal. 282(1), 201–208 (2011)

    Google Scholar 

  16. A.S. Ogunlaja, M.J. Coombes, N. Torto, Z.R. Tshentu, The adsorptive extraction of oxidised sulfur-containing compounds from fuels by using molecularly imprinted chitosan materials. React. Funct. Polym. 81, 61–76 (2014)

    CAS  Google Scholar 

  17. S. Otsuki, T. Nonaka, N. Takashima, W. Qian, A. Ishihara, T. Imai, T. Kabe, Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuel 14(6), 1232–1239 (2000)

    CAS  Google Scholar 

  18. T. Selvaraju, R. Ramaraj, Nanostructured copper particles-incorporated Nafion-modified electrode for oxygen reduction. Pramana 65(4), 713 (2005)

    CAS  Google Scholar 

  19. L. Wu, L. Hao, B. Pang, G. Wang, Y. Zhang, X. Li, MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5(9), 4629–4637 (2017)

    CAS  Google Scholar 

  20. P. Rodriguez, M.T. Koper, Electrocatalysis on gold. Phys. Chem. Chem. Phys. 16(27), 13583–13594 (2014)

    CAS  Google Scholar 

  21. Y. Kwon, S.C.S. Lai, P. Rodriguez, M.T.M. Koper, Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J. Am. Chem. Soc. 133(18), 6914–6917 (2011)

    CAS  Google Scholar 

  22. G.A. Rimbu, I. Stamatin, C.L. Jackson, K. Scott, The morphology control of polyaniline as conducting polymer in fuel cell technology. J. Optoelectron. Adv. Mater. 8(2), 670–674 (2006)

    CAS  Google Scholar 

  23. Z. Wang, E. Liu, X. Zhao, Glassy carbon electrode modified by conductive polyaniline coating for determination of trace lead and cadmium ions in acetate buffer solution. Thin Solid Films 519(15), 5285–5289 (2011)

    CAS  Google Scholar 

  24. L. Ding, Q. Li, D. Zhou, H. Cui, H. Ani, J. Zhai, Modification of glassy carbon electrode with polyaniline/multi-walled carbon nanotubes composite: application to electro-reduction of bromate. J. Electroanal. Chem. 668, 44–50 (2012)

    CAS  Google Scholar 

  25. I. Mickova, A. Prusi, T. Grcev, L. Arsov, Electrochemical polymerization of aniline in presence of TiO2 nanoparticles. Bull. Chem. Technol. Maced. 25(1), 45–50 (2006)

    CAS  Google Scholar 

  26. G. Gotti, K. Fajerwergc, D. Evrarda, P. Gros, Electrodeposited gold nanoparticles on glassy carbon: correlation between nanoparticles characteristics and oxygen reduction kinetics in neutral media. Electrochim. Acta 128, 412–419 (2014)

    CAS  Google Scholar 

  27. T. Hezard, K. Fajerwerg, D. Evrard, V. Collière, P. Behra, P. Gros, Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: application to Hg(II) trace analysis. J. Electroanal. Chem. 664, 46–52 (2012)

    CAS  Google Scholar 

  28. M.S. El-Deab, On the preferential crystallographic orientation of Au nanoparticles: effect of electrodeposition time. Electrochim. Acta 54(14), 3720–3725 (2009)

    CAS  Google Scholar 

  29. D.H. Ninh, T.T. Thao, P.D. Long, N.N. Dinh, Characterization of electrochromic properties of polyaniline thin films electropolymerized in H2SO4 solution. Open J. Org. Polym. Mater. 6(01), 30–37 (2016)

    CAS  Google Scholar 

  30. D.W. Hatchett, M. Josowicz, J. Janata, Acid doping of polyaniline: spectroscopic and electrochemical studies. J. Phys. Chem. B 103(50), 10992–10998 (1999)

    CAS  Google Scholar 

  31. M. Lee, B.W. Kim, J.D. Nam, Y. Lee, Y. Son, S.J. Seo, In-situ formation of gold nanoparticle/conducting polymer nanocomposites. Mol. Cryst. Liq. Cryst. 407, 397–402 (2003)

    CAS  Google Scholar 

  32. P.K. Khanna, N. Singh, C. Charan, A. Viswanath, Synthesis of Ag/polyaniline nanocomposite via an in situ photo redox mechanism. Mater. Chem. Phys. 92(1), 214–219 (2005)

    CAS  Google Scholar 

  33. Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, Vibrational spectra and structure of polyaniline. Macromolecules 21(5), 1297–1305 (1998)

    Google Scholar 

  34. J.M. Kinyanjui, D.W. Hatchett, Chemical synthesis of a polyaniline/gold composite using tetrachloroaurate. Chem. Mater. 16(17), 3390–3398 (2004)

    CAS  Google Scholar 

  35. J.M. Kinyanjui, J. Hanks, D.W. Hatchett, A. Smith, M. Josowicz, Chemical and electrochemical synthesis of polyaniline/gold composites. J. Electrochem. Soc. 151(12), D113–D120 (2004)

    CAS  Google Scholar 

  36. K. Zhang, Y. Shi, S. Li, C. Wang, B. Yan, H. Xu, J. Wang, J. Guo, Y. Du, Au nanochain anchored on three-dimensional PANI/RGO nanocomposites as high performance catalyst for ethanol electrooxidation. ChemElectroChem. 4(8), 1937–1943 (2017)

    CAS  Google Scholar 

  37. E.T. Kang, Y.P. Ting, K.G. Neoh, K.L. Tan, Spontaneous and sustained gold reduction by polyaniline in acid solution. Polymer 34, 4994–4996 (1993)

    CAS  Google Scholar 

  38. Y.P. Ting, K.G. Neoh, E.T. Kang, K.L. Tan, Recovery of gold by electrolyses precipitation from acid solutions using polyaniline. J. Chem. Technol. Biotechnol. 59(1), 31–36 (1994)

    CAS  Google Scholar 

  39. R.J. Tseng, C.O. Baker, B. Shedd, J. Huang, R.B. Kaner, J. Ouyang, Y. Yang, Charge transfer effect in the polyaniline-gold nanoparticle memory system. Appl. Phys. Lett. 90(5), 053101 (2007)

    Google Scholar 

  40. E. Méndez-Albores, M. González-Fuentes, M. Dávila-Jiménez, F. González, Role of water in the formation of sulfoxide and sulfone derivatives during the electrochemical oxidation of dibenzothiophene in acetonitrile. J. Electroanal. Chem. 751, 7–14 (2015)

    Google Scholar 

  41. A.S. Ogunlaja, W. Chidawanyika, E. Antunes, M.A. Fernandes, T. Nyokong, N. Torto, Z.R. Tshentu, Oxovanadium(IV) catalysed oxidation of dibenzothiophene and 4,6-dimethyldibenzothiophene. Dalton Trans. 41-45, 13908–13918 (2012)

    Google Scholar 

  42. J. Masud, M.T. Alam, R. Miah Md, T. Okajima, T. Ohsaka, Enhanced electrooxidation of formic acid at Ta2O5-modified Pt electrode. Electrochem. Commun. 13(6), 86–89 (2011)

    CAS  Google Scholar 

  43. Y. Zhao, R. Wang, Z. Han, C. Li, Y. Wang, B. Chi, Y. Li, X. Wang, Electrooxidation of methanol and ethanol in acidic medium using a platinum electrode modified with lanthanum-doped tantalum oxide film. Electrochim. Acta 151, 544–551 (2011)

    Google Scholar 

  44. Y.H. Zhao, K. Aoki, Transition from heterogeneous catalytic reaction to homogeneous one by variation of palladium particle size. Chem. Phys. Lett. 430(1-3), 117–120 (2006)

    CAS  Google Scholar 

  45. F. Shi, M.K. Tse, M.M. Pohl, A. Brückner, S.M. Zhang, A. Beller, Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations. Angew. Chem. Int. Ed. 46(46), 8866–8868 (2007)

    CAS  Google Scholar 

  46. A.S. Ogunlaja, E.C. Hosten, Z.R. Tshentu, Dispersion of asphaltenes in petroleum with ionic liquids-evaluation of molecular interactions in the binary mixture. Ind. Eng. Chem. Res. 53(48), 18390–18401 (2014)

    CAS  Google Scholar 

  47. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford, 2016

  48. A.D. Becke, Becke’s three parameter hybrid method using the LYP correlation functional. J. Chem. Phys. 98(492), 5648–5652 (1993)

    CAS  Google Scholar 

  49. C. Lee, W. Yang, R.G. Parr, Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. B 37(2), 785–789 (1988)

    CAS  Google Scholar 

  50. C. Comninellis, A. De Battisti, Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution. J. Chim. Phys. Phys. 93, 673–679 (1996)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the National Research Foundation (NRF) of South Africa for funding the project. The authors also thank the Center for High Performance Computing (CHPC) (Cape Town, South Africa) for providing the platform for DFT studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeniyi S. Ogunlaja.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoba, S., Bankole, O.M. & Ogunlaja, A.S. Electrocatalytic Oxidation of Dibenzothiophene and 4,6-Dimethyldibenzothiophene at Gold-Polyaniline (Au-PANI) Composite Electrodes. Electrocatalysis 11, 593–603 (2020). https://doi.org/10.1007/s12678-020-00617-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00617-8

Keywords

Navigation