Skip to main content

Advertisement

Log in

Tumor cell-expressed IL-15Rα drives antagonistic effects on the progression and immune control of gastric cancer and is epigenetically regulated in EBV-positive gastric cancer

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Epstein-Barr virus associated gastric cancer (EBVaGC) often exhibits a favorable prognosis that correlates with highly methylated viral and host genes and significant immune cell infiltration compared to EBV-negative gastric cancers (GCs). Previously, it has been reported that expression of the IL-15 receptor α (IL-15Rα) is down-regulated in EBVaGC via promoter hypermethylation. In the present study, we offer a novel explanation for this puzzle by associating IL-15Rα expression with infiltration of lymphocytes in GC lesions.

Methods

We investigated the expression of IL-15Rα by RT-PCR, Western-blotting and immunohistochemistry in GC cell lines and primary tissues, respectively. IL-15Rα promoter methylation was analyzed using genomic methylation sequencing. The growth behavior of GC cells was analyzed using MTT, flow cytometry, colony formation, transwell invasion and scratch wound healing assays. Demethylation of IL-15Rα was carried out using 5-Aza-CdR, and rIL-15 was added to evaluate growth promoting effects of the IL-15/IL-15Rα complex. Human peripheral blood mononuclear cells (PBMCs) were co-cultured with GC cells with/without the addition of rIL-15, after which the phosphorylation of STAT5 in PBMCs was evaluated using flow cytometry to estimate the activation of these immune cells through IL-15 binding to IL-2Rβ/γ receptors by in trans presentation.

Results

We found that EBV-positive GC cells (AE) expressed IL-15Rα at a significantly lower level than EBV-negative GC cells (AGS) due to promoter hypermethylation. In the absence of immune cells, IL-15Rα on the cancer cell surface induced a malignant phenotype, including augmented cell growth, migration and invasion, and decreased apoptosis. 5-Aza-CdR reverted AE cells to a more malignant phenotype similar to AGS cells, which may be attributed to activation of the STAT1, STAT3 and ERK1/2 pathways. However, when PBMCs were added to the GC cell cultures, these immune cells were activated as detected by increased pSTAT5 levels. Also, more GC cells underwent apoptosis. These effects were enhanced by the addition of rIL-15 and, subsequently, confirmed in EBVaGC patient samples exhibiting increased expression of T cell surface markers and activation of immune co-stimulating pathways.

Conclusions

Our findings suggest a mechanistic explanation for the clinical association of EBVaGC with a lower IL-15Rα expression, a better prognosis and an increased lymphocyte infiltration. We propose that in highly infiltrated GCs the IL-15/IL-15Rα complex on the GC cell surface may present IL-15 in trans to IL-2Rβ/γ-expressing immune cells to activate these cells in the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. J.G. Giri, M. Ahdieh, J. Eisenman, K. Shanebeck, K. Grabstein, S. Kumaki, A. Namen, L.S. Park, D. Cosman, D. Anderson, Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 13, 2822–2830 (1994)

    Article  CAS  Google Scholar 

  2. V. Budagian, E. Bulanova, R. Paus, S. Bulfone-Paus, IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev. 17, 259–280 (2006). https://doi.org/10.1016/j.cytogfr.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  3. J. Lodolce, P. Burkett, R. Koka, D. Boone, M. Chien, F. Chan, M. Madonia, S. Chai, A. Ma, Interleukin-15 and the regulation of lymphoid homeostasis. Mol. Immunol. 39, 537–544 (2002). https://doi.org/10.1016/s0161-5890(02)00211-0

    Article  CAS  PubMed  Google Scholar 

  4. W.J. Leonard, Cytokines and immunodeficiency diseases. Nat. Rev. Immunol. 1, 200–208 (2001). https://doi.org/10.1038/35105066

    Article  CAS  PubMed  Google Scholar 

  5. B. Becknell, M.A. Caligiuri, Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv. Immunol. 86, 209–239 (2005). https://doi.org/10.1016/s0065-2776(04)86006-1

    Article  CAS  PubMed  Google Scholar 

  6. S. Bulfone-Paus, D. Ungureanu, T. Pohl, G. Lindner, R. Paus, R. Ruckert, H. Krause, U. Kunzendorf, Interleukin-15 protects from lethal apoptosis in vivo. Nat. Med. 3, 1124–1128 (1997)

    Article  CAS  Google Scholar 

  7. T.A. Waldmann, The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 3, 219–227 (2015). https://doi.org/10.1158/2326-6066.cir-15-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C.L. Sutherland, B. Rabinovich, N.J. Chalupny, P. Brawand, R. Miller, D. Cosman, ULBPs, human ligands of the NKG2D receptor, stimulate tumor immunity with enhancement by IL-15. Blood 108, 1313–1319 (2006). https://doi.org/10.1182/blood-2005-11-011320

    Article  CAS  PubMed  Google Scholar 

  9. P. Marra, S. Mathew, A. Grigoriadis, Y. Wu, F. Kyle-Cezar, J. Watkins, M. Rashid, E. De Rinaldis, S. Hessey, P. Gazinska, A. Hayday, A. Tutt, IL15RA drives antagonistic mechanisms of cancer development and immune control in lymphocyte-enriched triple-negative breast cancers. Cancer Res. 74, 4908–4921 (2014). https://doi.org/10.1158/0008-5472.can-14-0637

    Article  CAS  PubMed  Google Scholar 

  10. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019). https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  11. J. Ferlay, I. Soerjomataram, M. Ervik, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, (International Agency for Research on Cancer, Lyon, France, 2013)

  12. P. Zhang, L. Shi, T. Zhang, L. Hong, W. He, P. Cao, X. Shen, P. Zheng, Y. Xia, P. Zou, Piperlongumine potentiates the antitumor efficacy of oxaliplatin through ROS induction in gastric cancer cells. Cell. Oncol. 42, 847–860 (2019). https://doi.org/10.1007/s13402-019-00471-x

    Article  CAS  Google Scholar 

  13. W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He, Cancer statistics in China, 2015. CA Cancer J. Clin. 66, 115–132 (2016). https://doi.org/10.3322/caac.21338

    Article  PubMed  Google Scholar 

  14. A.T. Deyrup, Epstein-Barr virus-associated epithelial and mesenchymal neoplasms. Hum. Pathol. 39, 473–483 (2008). https://doi.org/10.1016/j.humpath.2007.10.030

    Article  CAS  PubMed  Google Scholar 

  15. P. Boyle, B. Levin, World cancer report 2008 (IARC Press, Lyon, 2008)

    Google Scholar 

  16. K. Takada, Epstein-Barr virus and gastric carcinoma. Mol. Pathol. 53, 255–261 (2000). https://doi.org/10.1136/mp.53.5.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J.H. Lee, S.H. Kim, S.H. Han, J.S. An, E.S. Lee, Y.S. Kim, Clinicopathological and molecular characteristics of Epstein-Barr virus-associated gastric carcinoma: a meta-analysis. J. Gastroenterol. Hepatol. 24, 354–365 (2009). https://doi.org/10.1111/j.1440-1746.2009.05775.x

    Article  PubMed  Google Scholar 

  18. G. Murphy, R. Pfeiffer, M.C. Camargo, C.S. Rabkin, Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology 137, 824–833 (2009). https://doi.org/10.1053/j.gastro.2009.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  19. J. van Beek, A. zur Hausen, E. Klein Kranenbarg, C.J. van de Velde, J.M. Middeldorp, A.J. van den Brule, C.J. Meijer, E. Bloemena, EBV-positive gastric adenocarcinomas: a distinct clinicopathologic entity with a low frequency of lymph node involvement. J. Clin. Oncol. 22, 664–670 (2004). https://doi.org/10.1200/jco.2004.08.061

    Article  PubMed  Google Scholar 

  20. M.C. Camargo, W.H. Kim, A.M. Chiaravalli, K.M. Kim, A.H. Corvalan, K. Matsuo, J. Yu, J.J. Sung, R. Herrera-Goepfert, F. Meneses-Gonzalez, Y. Kijima, S. Natsugoe, L.M. Liao, J. Lissowska, S. Kim, N. Hu, C.A. Gonzalez, Y. Yatabe, C. Koriyama, S.M. Hewitt, S. Akiba, M.L. Gulley, P.R. Taylor, C.S. Rabkin, Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut 63, 236–243 (2014). https://doi.org/10.1136/gutjnl-2013-304531

    Article  PubMed  Google Scholar 

  21. Q. Tao, L.S. Young, C.B. Woodman, P.G. Murray, Epstein-Barr virus (EBV) and its associated human cancers–genetics, epigenetics, pathobiology and novel therapeutics. Front. Biosci. 11, 2672–2713 (2006)

    Article  CAS  Google Scholar 

  22. R. Hino, H. Uozaki, Y. Inoue, Y. Shintani, T. Ushiku, T. Sakatani, K. Takada, M. Fukayama, Survival advantage of EBV-associated gastric carcinoma: survivin up-regulation by viral latent membrane protein 2A. Cancer Res. 68, 1427–1435 (2008). https://doi.org/10.1158/0008-5472.can-07-3027

    Article  CAS  PubMed  Google Scholar 

  23. T. Ushiku, J.M. Chong, H. Uozaki, R. Hino, M.S. Chang, M. Sudo, B.R. Rani, K. Sakuma, H. Nagai, M. Fukayama, p73 gene promoter methylation in Epstein-Barr virus-associated gastric carcinoma. Int. J. Cancer 120, 60–66 (2007). https://doi.org/10.1002/ijc.22275

    Article  CAS  PubMed  Google Scholar 

  24. H. Geddert, A. zur Hausen, H.E. Gabbert, M. Sarbia, EBV-infection in cardiac and non-cardiac gastric adenocarcinomas is associated with promoter methylation of p16, p14 and APC, but not hMLH1. Cell. Oncol. 34, 209–214 (2011). https://doi.org/10.1007/s13402-011-0028-6

    Article  CAS  Google Scholar 

  25. M. Sudo, J.M. Chong, K. Sakuma, T. Ushiku, H. Uozaki, H. Nagai, N. Funata, Y. Matsumoto, M. Fukayama, Promoter hypermethylation of E-cadherin and its abnormal expression in Epstein-Barr virus-associated gastric carcinoma. Int. J. Cancer 109, 194–199 (2004). https://doi.org/10.1002/ijc.11701

    Article  CAS  PubMed  Google Scholar 

  26. J. Zhao, Q. Liang, K.F. Cheung, W. Kang, R.W. Lung, J.H. Tong, K.F. To, J.J. Sung, J. Yu, Genome-wide identification of Epstein-Barr virus-driven promoter methylation profiles of human genes in gastric cancer cells. Cancer 119, 304–312 (2013). https://doi.org/10.1002/cncr.27724

    Article  CAS  PubMed  Google Scholar 

  27. J.D. Burton, R.N. Bamford, C. Peters, A.J. Grant, G. Kurys, C.K. Goldman, J. Brennan, E. Roessler, T.A. Waldmann, A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc. Natl. Acad. Sci. U. S. A. 91, 4935–4939 (1994). https://doi.org/10.1073/pnas.91.11.4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. E.H. Duitman, Z. Orinska, E. Bulanova, R. Paus, S. Bulfone-Paus, How a cytokine is chaperoned through the secretory pathway by complexing with its own receptor: lessons from interleukin-15 (IL-15)/IL-15 receptor alpha. Mol. Cell. Biol. 28, 4851–4861 (2008). https://doi.org/10.1128/mcb.02178-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. K.H. Grabstein, J. Eisenman, K. Shanebeck, C. Rauch, S. Srinivasan, V. Fung, C. Beers, J. Richardson, M.A. Schoenborn, M. Ahdieh et al., Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264, 965–968 (1994). https://doi.org/10.1126/science.8178155

    Article  CAS  PubMed  Google Scholar 

  30. R.J. Armitage, B.M. Macduff, J. Eisenman, R. Paxton, K.H. Grabstein, IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J. Immunol. 154, 483–490 (1995)

    CAS  PubMed  Google Scholar 

  31. W.E. Carson, T.A. Fehniger, S. Haldar, K. Eckhert, M.J. Lindemann, C.F. Lai, C.M. Croce, H. Baumann, M.A. Caligiuri, A potential role for interleukin-15 in the regulation of human natural killer cell survival. J. Clin. Invest. 99, 937–943 (1997). https://doi.org/10.1172/jci119258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T.A. Waldmann, The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006). https://doi.org/10.1038/nri1901

    Article  CAS  PubMed  Google Scholar 

  33. T. Taniguchi, Y. Minami, The IL-2/IL-2 receptor system: a current overview. Cell 73, 5–8 (1993). https://doi.org/10.1016/0092-8674(93)90152-g

    Article  CAS  PubMed  Google Scholar 

  34. R. Pereno, J. Giron-Michel, A. Gaggero, E. Cazes, R. Meazza, M. Monetti, E. Monaco, Z. Mishal, C. Jasmin, F. Indiveri, S. Ferrini, B. Azzarone, IL-15/IL-15Ralpha intracellular trafficking in human melanoma cells and signal transduction through the IL-15Ralpha. Oncogene 19, 5153–5162 (2000). https://doi.org/10.1038/sj.onc.1203873

    Article  CAS  PubMed  Google Scholar 

  35. T.A. Waldmann, S. Dubois, J. Muller, C. Goldman, S. Damjanovich, in Biophysical Aspects of Transmembrane Signaling, ed. by S. Damjanovich (Springer, Heidelberg, 2005), p. 97–121

  36. S. Dubois, W. Shou, L.S. Haneline, S. Fleischer, T.A. Waldmann, J.R. Muller, Distinct pathways involving the FK506-binding proteins 12 and 12.6 underlie IL-2-versus IL-15-mediated proliferation of T cells. Proc. Natl. Acad. Sci. U. S. A. 100, 14169–14174 (2003). https://doi.org/10.1073/pnas.2335979100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S.W. Stonier, K.S. Schluns, Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immunol. Lett. 127, 85–92 (2010). https://doi.org/10.1016/j.imlet.2009.09.009

    Article  CAS  PubMed  Google Scholar 

  38. P.R. Burkett, R. Koka, M. Chien, S. Chai, D.L. Boone, A. Ma, Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8 + T cell homeostasis. J. Exp. Med. 200, 825–834 (2004). https://doi.org/10.1084/jem.20041389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. N.D. Huntington, N. Legrand, N.L. Alves, B. Jaron, K. Weijer, A. Plet, E. Corcuff, E. Mortier, Y. Jacques, H. Spits, J.P. Di Santo, IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J. Exp. Med. 206, 25–34 (2009). https://doi.org/10.1084/jem.20082013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. H. Kobayashi, S. Dubois, N. Sato, H. Sabzevari, Y. Sakai, T.A. Waldmann, Y. Tagaya, Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood 105, 721–727 (2005). https://doi.org/10.1182/blood-2003-12-4187

    Article  CAS  PubMed  Google Scholar 

  41. D. Meghnem, S. Morisseau, M. Frutoso, K. Trillet, M. Maillasson, I. Barbieux, S. Khaddage, I. Leray, M. Hildinger, A. Quemener, Y. Jacques, E. Mortier, Cutting edge: eifferential fine-tuning of IL-2- and IL-15-dependent functions by targeting their common IL-2/15Rbeta/gammac receptor. J. Immunol. 198, 4563–4568 (2017). https://doi.org/10.4049/jimmunol.1700046

    Article  CAS  PubMed  Google Scholar 

  42. C. Figueiredo, M.C. Camargo, M. Leite, E.M. Fuentes-Panana, C.S. Rabkin, J.C. Machado, Pathogenesis of gastric cancer: genetics and molecular classification. Curr. Top. Microbiol. Immunol. 400, 277–304 (2017). https://doi.org/10.1007/978-3-319-50520-6_12

    Article  CAS  PubMed  Google Scholar 

  43. R.M. Santana Carrero, F. Beceren-Braun, S.C. Rivas, S.M. Hegde, A. Gangadharan, D. Plote, G. Pham, S.M. Anthony, K.S. Schluns, IL-15 is a component of the inflammatory milieu in the tumor microenvironment promoting antitumor responses. Proc. Natl. Acad. Sci. U. S. A. 116, 599–608 (2019). https://doi.org/10.1073/pnas.1814642116

    Article  CAS  PubMed  Google Scholar 

  44. J. Li, W. Liu, K. Che, Y. Zhang, Z. Zhao, B. Luo, The methylation status and expression of Epstein-Barr virus early genes BARF1 and BHRF1 in Epstein-Barr virus-associated gastric carcinomas. Gastroenterol. Res. Pract. 2017, 3804146 (2017). https://doi.org/10.1155/2017/3804146

    Article  PubMed  PubMed Central  Google Scholar 

  45. A.C. Stevens, J. Matthews, P. Andres, V. Baffis, X.X. Zheng, D.W. Chae, J. Smith, T.B. Strom, W. Maslinski, Interleukin-15 signals T84 colonic epithelial cells in the absence of the interleukin-2 receptor beta-chain. Am. J. Physiol. 272, G1201–G1208 (1997). https://doi.org/10.1152/ajpgi.1997.272.5.G1201

    Article  CAS  PubMed  Google Scholar 

  46. Q. Wang, G. Gao, T. Zhang, K. Yao, H. Chen, M.H. Park, H. Yamamoto, K. Wang, W. Ma, M. Malakhova, A.M. Bode, Z. Dong, TRAF1 is critical for regulating the BRAF/MEK/ERK pathway in non-small cell lung carcinogenesis. Cancer Res. 78, 3982–3994 (2018). https://doi.org/10.1158/0008-5472.can-18-0429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C.D. Andl, T. Mizushima, K. Oyama, M. Bowser, H. Nakagawa, A.K. Rustgi, EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G1227–G1237 (2004). https://doi.org/10.1152/ajpgi.00253.2004

    Article  CAS  PubMed  Google Scholar 

  48. A. Masuda, T. Matsuguchi, K. Yamaki, T. Hayakawa, M. Kubo, W.J. LaRochelle, Y. Yoshikai, Interleukin-15 induces rapid tyrosine phosphorylation of STAT6 and the expression of interleukin-4 in mouse mast cells. J. Biol. Chem. 275, 29331–29337 (2000). https://doi.org/10.1074/jbc.M910290199

    Article  CAS  PubMed  Google Scholar 

  49. L.P. Gong, J.N. Chen, L. Xiao, Q. He, Z.Y. Feng, Z.G. Zhang, J.P. Liu, H.B. Wei, C.K. Shao, The implication of tumor-infiltrating lymphocytes in Epstein-Barr virus-associated gastric carcinoma. Hum. Pathol. 85, 82–91 (2019). https://doi.org/10.1016/j.humpath.2018.11.002

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Guangliang Liu (The State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute) for providing us with his expertise and reagents, Dr. Lucille London (School of Dental Medicine, Stony Brook University) for critical reading and editing the manuscript, and Dr. Jianhong Lu (Xiangya School of Medicine, Central South University) for helping with cells.

Funding

This research was supported by the Gansu Natural Science Foundation (18JR3RA279), Fundamental Research Funds for the Central Universities (223000/862612) and the Open Fund of the State Key Laboratory on Veterinary Etiological Biology (SKLVEB2017KFKT005).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: F. Zhang, J. Wei, C. Guo, and M. Li.

Development of methodology: F. Zhang, J. Wei, C. Guo, X. An and W. Miao.

Acquisition of samples: C. Zhang, B. Wang and W. Cai.

Analysis and interpretation of data (e.g., statistical analyses, biostatistics, computational analyses): F. Zhang, C. Guo, J. Wei and W. Miao.

Writing, review and/or revision of the manuscript: F. Zhang, J. Wei, and C. Guo.

Corresponding authors

Correspondence to Min Li or Fangfang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

This study was approved by the Ethics Committee of the institution.

Consent to participate

Informed consent was obtained from all individual patients.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jing Wei and Chen Guo are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Guo, C., An, X. et al. Tumor cell-expressed IL-15Rα drives antagonistic effects on the progression and immune control of gastric cancer and is epigenetically regulated in EBV-positive gastric cancer. Cell Oncol. 43, 1085–1097 (2020). https://doi.org/10.1007/s13402-020-00542-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00542-4

Keywords

Navigation