Skip to main content

Advertisement

Log in

Improvement in Low Temperature CO Oxidation Activity of CuOx/CeO2−δ by Cs2O Doping: Mechanistic Aspects

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The various wt% of Cs promoted CuOx/CeO2−δ catalysts were prepared by impregnation method and examined for CO oxidation. The 0.1 wt% Cs doped CuOx/CeO2−δ showed a maximum CO oxidation (22%) compared to the CuOx/CeO2−δ (9%) at light off temperature (40 ºC). The plausible CO oxidation mechanism has explained using characterization techniques like ATR-FTIR, XPS, XRD, SEM, H2-TPR, and HRTEM. The formation of Cs2O was responsible for the stabilization of Cu1+ species. The Cs doping increases the electron density on the catalyst surface due to the charge diffusion. The Cs addition in CuCe leads to the formation of smaller Cu1+ species, CuO nanorod, Ce3+ and adsorbed oxygen. The role of these species for CO oxidation at a lower temperature is explained in detail with plausible mechanism. The synergistic interaction of Cs with CuCe leads to the increase in CO conversion rate with decrease in the activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

 References

  1. Royer S, Duprez D (2011) Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem 3:24–65

    Article  CAS  Google Scholar 

  2. Daneshvar K, Dadi R, Luss D, Kang S, Kalamaras C, Epling W (2017) Experimental and modeling study of CO and hydrocarbons light-off on various Pt-Pd/γ-Al2O3 diesel oxidation catalysts Che. Eng J 323:347–360

    CAS  Google Scholar 

  3. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2004) Carbon monoxide oxidation over CuO/CeO2 catalysts. Catal Today 93–95:191–198

    Article  Google Scholar 

  4. Sun S, Ma Z, Mao D, Yu J, Yang Z, Lu G (2015) Low-temperature CO oxidation on CuO/CeO2 catalysts: the significant effect of copper precursor and calcination temperature. Catal Sci Technol 5:3166–3181

    Article  CAS  Google Scholar 

  5. Qi C, Zheng Y, Lin H, Su H, Sun X, Sun L (2019) CO oxidation over gold catalysts supported on CuO/Cu2O both in O2-rich and H2-rich streams: Necessity of copper oxide. Appl Catal B 253:160–169

    Article  CAS  Google Scholar 

  6. Hossain S, Azeeva E, Zhang E, Zell K, Bernard D, Balaz S, Wang R (2018) A comparative study of CO oxidation over Cu-O-Ce solid solutions and CuO/CeO2 nanorods catalysts. Appl Surf Sci 455:132–143

    Article  CAS  Google Scholar 

  7. Chiu K, Kwong F, Ng D (2012) Enhanced oxidation of CO by using a porous biomorphic CuO/CeO2/Al2O3 compound. Micropor Mesopor Mat 156:1–6

    Article  CAS  Google Scholar 

  8. Li YY, Gan L, Si RJ, Rare Earth (2020) Effect of Tungsten Oxide on Ceria Nanorods to Support Copper Species as CO Oxidation Catalysts. Doi: https://doi.org/10.1016/j.jre.2019.12.015

  9. Lendzion-Bielun Z, Monteverdi S (2010) Fe-promoted CuO/CeO2 catalyst: Structural characterization and CO oxidation activity. Catal Commun 11:1137–1142

    Article  CAS  Google Scholar 

  10. Tibiletti D, Bart de Graaf E, Teh S, Rothengerg G, Farrusseng D, Mirodatos C (2004) Selective CO oxidation in the presence of hydrogen: fast parallel screening and mechanistic studies on ceria-based catalysts. J Catal 225:489–497

    Article  CAS  Google Scholar 

  11. Yang Y, Zhang Y, Huang X, Chen W, Fu X (2016) Insight into the function of alkaline earth metal oxides as electron promoters for Au/TiO2 catalysts used in CO oxidation. Appl Catal B 183:206–215

    Article  CAS  Google Scholar 

  12. Shen Y, Suib S, Oyoung C (1994) Effects of inorganic cation templates on octahedral molecular sieves of manganese oxide. J Am Chem Soc 116:11020–11029

    Article  CAS  Google Scholar 

  13. Santos V, Pereira M, Orfao J, Figueiredo (2009) Catalytic oxidation of ethyl acetate over a cesium modified cryptomelane catalyst. Appl Catal B 88:550–556

    Article  CAS  Google Scholar 

  14. Ruiz M, Lick I, Ponzi M, Rodriguez-Castellon E, Jimenez-Lopez A, Ponz E (2011) Combustion of diesel soot in NO/O2 presence. Cesium nitrate and gold catalysts. Appl Catal A 392:45–56

    Article  CAS  Google Scholar 

  15. Peiwen G, Feng Q, Chao S, Zen H, Wei S, Hualong X (2019) Effect of Cesium Modification on CuO/CeO2 Catalysts for the Catalytic Decomposition of N2O. Chem. Res Chinese U 25:47–52

    Google Scholar 

  16. More R, Lavande N, More P (2019) Copper supported on Co substituted hydroxyapatite for complete oxidation of diesel engine exhaust and VOC. Mol Catal 474:110414

    Article  CAS  Google Scholar 

  17. Avgouropoulos G, Ioannides T, Matralis H (2005) Influence of the preparation method on the performance of CuO–CeO2 catalysts for the selective oxidation of CO. Appl Catal B 56:87–93

    Article  CAS  Google Scholar 

  18. Hossain S, Zell E, Balaz S, Wang R (2019) A γ to α type transition of CuO species over CeO2-SiO2 composites supported CuO catalysts. Appl Surf Sci 491:374–382

    Article  CAS  Google Scholar 

  19. Wojcieszak R, Cuccovia I, Silva M, Rossi L (2016) Selective oxidation of glucose to glucuronic acid by cesium-promoted gold nanoparticle catalyst. J Mol Catal A 422:35–12

    Article  CAS  Google Scholar 

  20. Lykaki M, Papista E, Carabineiro S (2018) Optimization of N2O decomposition activity of CuO–CeO2 mixed oxides by means of synthesis procedure and alkali (Cs) promotion. Catal Sci Technol 8:2312–2322

    Article  CAS  Google Scholar 

  21. Aika K, Hori H, Ozaki A (1972) Optimization of N2O decomposition activity of CuO–CeO2 mixed oxides by means of synthesis procedure and alkali (Cs) promotion. J Catal 27:424–431

    Article  CAS  Google Scholar 

  22. Pasha N, Lingaiah N, Reddy P, Sai Prasad P (2009) Direct Decomposition of N2O over Cesium-doped CuO Catalysts. Catal Lett 127:101–106

    Article  CAS  Google Scholar 

  23. Wang J, Zhong L, Lu J, Chen R, Lei Y, Chen K, Han C, He S, Wan G, Luo Y (2017) A solvent-free method to rapidly synthesize CuO-CeO2 catalysts to enhance their CO preferential oxidation: Effects of Cu loading and calcination temperature. Mol Catal 443:241–252

    Article  CAS  Google Scholar 

  24. Lu J, Wang J, Zhou Q, He D, Zhang L, Xu Z, He S, Luo Y (2019) CeO2 – x quantum dots with massive oxygen vacancies as efficient catalysts for the synthesis of dimethyl carbonate. ACS Catal 9:2177–2195

    Article  CAS  Google Scholar 

  25. Zhao F, Li S, Wu X, Yue R, Li W, Zha X, Deng Y, Chen Y (2019) Catalytic Behaviour of Flame-Made CuO-CeO2 Nanocatalysts in Efficient CO Oxidation. Catalysts 9:256

    Article  Google Scholar 

  26. More R, Lavande N, More P (2018) Ba doped on CeO2–δ supported MnOx catalyst for selective oxidation of alcohol to aldehyde. Catal Commun 116:52–56

    Article  CAS  Google Scholar 

  27. Loschen C, Bromley S, Neyman K, Illas F (2007) Understanding Ceria Nanoparticles from First-Principles Calculations. J Phys Chem C 111:10142–10145

    Article  CAS  Google Scholar 

  28. Biesinger M, Hart B, Polack R, Kobe B, Smart R (2007) Analysis of mineral surface chemistry in flotation separation using imaging XPS. Miner Eng 20:152–162

    Article  CAS  Google Scholar 

  29. Schumann J, Kröhnert J, Frei E, Schlögl R, Trunschke A (2017) IR-spectroscopic study on the interface of Cu-based methanol synthesis catalysts: evidence for the formation of a ZnO overlayer. Top Catal 60:1735–1743

    Article  CAS  Google Scholar 

  30. Wei M, Huo (2010) Preparation of Cu2O nanorods by a simple solvothermal method. J Mat Chem Phy 121:291–294

    Article  CAS  Google Scholar 

  31. Band A, Albu-Yaron A, Livneh T, Cohen H, Feldman Y, Shimon L, Popovitz-Biro R, Lyahovitskaya V, Tenne R (2004) Characterization of oxides of cesium. J Phys Chem B 108:12360–12367

    Article  CAS  Google Scholar 

  32. Leung E, Shimizu A, Barmak K, Farrauto R (2017) Copper oxide catalyst supported on niobium oxide for CO oxidation at low temperatures. Catal Commun 97:42–46

    Article  CAS  Google Scholar 

  33. Han D, Chen Y, Wang S, Xiao M, Lu Y, Meng Y (2018) Effect of alkali-doping on the performance of diatomite supported Cu-Ni bimetal catalysts for direct synthesis of dimethyl carbonate. Catalysts 8:302

    Article  Google Scholar 

  34. Hamid S, Ambursa M, Voon, Sudarsanam PL, Bhargava S (2017) Effect of Ti loading on structure-activity properties of Cu-Ni/Ti-MCM-41 catalysts in hydrodeoxygenation of guaiacol. Catal Commun 94:18–22

    Article  Google Scholar 

  35. Li Y, Zhang C, He H, Zhang J, Chen M (2016) Influence of alkali metals on Pd/TiO2 catalysts for catalytic oxidation of formaldehyde at room temperature. Catal Sci Technol 6:2289–2295

    Article  CAS  Google Scholar 

  36. Ciura K, Grzybek G, Wojcik S, Indyka P, Kotarba A, Sojka Z (2017) Optimization of cesium and potassium promoter loading in alkali-doped Zn0.4Co2.6O4|Al2O3 catalysts for N2O abatement. React Kinet Mech Cat 121:645–655

    Article  CAS  Google Scholar 

Download references

 Acknowledgement

The SERB, DST, Delhi acknowledged for early career research award (ECR/2016/000823. CSIR-NCL, Pune and Prof. G. D. Yadav acknowledged for XPS and TPR characterization respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan More.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waikar, J., Lavande, N., More, R. et al. Improvement in Low Temperature CO Oxidation Activity of CuOx/CeO2−δ by Cs2O Doping: Mechanistic Aspects. Catal Surv Asia 24, 269–277 (2020). https://doi.org/10.1007/s10563-020-09310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09310-8

Keywords

Navigation