Skip to main content

Advertisement

Log in

Melatonin Rescues the Ti Particle-Impaired Osteogenic Potential of Bone Marrow Mesenchymal Stem Cells via the SIRT1/SOD2 Signaling Pathway

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Wear particles released by joint implants are a major cause of osteolysis around the prosthesis by negatively affecting bone reconstruction. Bone marrow mesenchymal stem cells (BMMSCs) stimulated by wear particles showed an impaired osteogenic potential. Melatonin has been shown beneficial effects on intracellular antioxidant functions and bone formation; however, whether it could restore the osteogenic potential of BMMSCs inhibited by wear particles was unknown. This study aimed to evaluate the protective effect of melatonin on the osteogenic capacity of BMMSCs exposed to titanium (Ti) wear particles and to investigated the underlying mechanisms involving intracellular antioxidant properties. When BMMSCs were exposed to Ti particles in vitro, melatonin treatment successfully improved the matrix mineralization and expression of osteogenic markers in BMMSCs, while decreasing the levels of intracellular reactive oxygen species (ROS) and mitochondrial superoxide. The protective effect of melatonin on osteolysis was validated in a Ti particle-exposed murine calvarial model. Meanwhile, silent information regulator type 1 (SIRT1) and intracellular antioxidant enzymes were significantly up-regulated, particularly superoxide dismutase 2 (SOD2), in melatonin-treated BMMSCs. Furthermore, inhibition of SIRT1 by EX527 completely counteracted the protective effect of melatonin on Ti particle-treated BMMSCs, evidenced by the reduced expression of SOD2, increased ROS and superoxide, and decreased osteogenic differentiation. These results demonstrated that melatonin restored the osteogenic potential and improved the antioxidant properties of BMMSCs through the SIRT1 signaling pathway. Our findings suggest that melatonin is a promising candidate for treating osteolysis induced by wear particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Evans JT, Walker RW, Evans JP, Blom AW, Sayers A, Whitehouse MR (2019) How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. The Lancet 393(10172):655–663. https://doi.org/10.1016/s0140-6736(18)32531-5

    Article  Google Scholar 

  2. Kurtz SM, Lau EC, Ong KL, Adler EM, Kolisek FR, Manley MT (2017) Which Clinical and Patient Factors Influence the National Economic Burden of Hospital Readmissions After Total Joint Arthroplasty? Clin Orthop Relat Res 475(12):2926–2937. https://doi.org/10.1007/s11999-017-5244-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goodman SB, Gallo J (2019) Periprosthetic Osteolysis: Mechanisms. J Clin Med Prevention and Treatment. https://doi.org/10.3390/jcm8122091

    Article  Google Scholar 

  4. O'Neill SC, Queally JM, Devitt BM, Doran PP, O'Byrne JM (2013) The role of osteoblasts in peri-prosthetic osteolysis. Bone Joint J 95(8):1022–1026. https://doi.org/10.1302/0301-620X.95B8.31229

    Article  PubMed  Google Scholar 

  5. Ping Z, Wang Z, Shi J, Wang L, Guo X, Zhou W, Hu X, Wu X, Liu Y, Zhang W, Yang H, Xu Y, Gu Y, Geng D (2017) Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-kappaB signaling. Acta Biomater 62:362–371. https://doi.org/10.1016/j.actbio.2017.08.046

    Article  CAS  PubMed  Google Scholar 

  6. Zhang L, Feng M, Li Z, Zhu M, Fan Y, Chu B, Yuan C, Chen L, Lv H, Hong Z, Hong D (2018) Bulleyaconitine A prevents Ti particle-induced osteolysis via suppressing NF-kappaB signal pathway during osteoclastogenesis and osteoblastogenesis. J Cell Physiol 233(9):7067–7079. https://doi.org/10.1002/jcp.26508

    Article  CAS  PubMed  Google Scholar 

  7. Niska K, Pyszka K, Tukaj C, Wozniak M, Radomski MW, Inkielewicz-Stepniak I (2015) Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int J Nanomedicine 10:1095–1107. https://doi.org/10.2147/IJN.S73557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu G, Zhao J, Liu H, Wang J, Lu W (2019) Melatonin inhibits apoptosis and oxidative stress of mouse Leydig Cells via a SIRT1-dependent mechanism. Molecules. https://doi.org/10.3390/molecules24173084

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mayo JC, Sainz RM, Gonzalez Menendez P, Cepas V, Tan DX, Reiter RJ (2017) Melatonin and sirtuins: A “not-so unexpected” relationship. J Pineal Res. https://doi.org/10.1111/jpi.12391

    Article  PubMed  Google Scholar 

  10. Park K-H, Kang JW, Lee E-M, Kim JS, Rhee YH, Kim M, Jeong SJ, Park YG, Kim SH (2011) Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res 51(2):187–194. https://doi.org/10.1111/j.1600-079X.2011.00875.x

    Article  CAS  PubMed  Google Scholar 

  11. Renn T-Y, Huang Y-K, Feng S-W, Wang H-W, Lee W-F, Lin C-T, Burnouf T, Chen L-Y, Kao P-F, Chang H-M (2018) Prophylactic supplement with melatonin successfully suppresses the pathogenesis of periodontitis through normalizing RANKL/OPG ratio and depressing the TLR4/MyD88 signaling pathway. J Pineal Res. https://doi.org/10.1111/jpi.12464

    Article  PubMed  Google Scholar 

  12. Cieslar-Pobuda A, Yue J, Lee HC, Skonieczna M, Wei YH (2017) ROS and Oxidative Stress in Stem Cells. Oxid Med Cell Longev 2017:5047168. https://doi.org/10.1155/2017/5047168

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arai M, Shibata Y, Pugdee K, Abiko Y, Ogata Y (2007) Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life 59(1):27–33. https://doi.org/10.1080/15216540601156188

    Article  CAS  PubMed  Google Scholar 

  14. Hameister R, Kaur C, Dheen ST, Lohmann CH, Singh G (2020) Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty. J Biomed Mater Res B Appl Biomater. https://doi.org/10.1002/jbm.b.34546

    Article  PubMed  Google Scholar 

  15. Bressan E, Ferroni L, Gardin C, Bellin G, Sbricoli L, Sivolella S, Brunello G, Schwartz-Arad D, Mijiritsky E, Penarrocha M, Penarrocha D, Taccioli C, Tatullo M, Piattelli A, Zavan B (2019) Metal Nanoparticles Released from Dental Implant Surfaces: Potential Contribution to Chronic Inflammation and Peri-Implant Bone Loss. Materials (Basel) 12 (12). doi:https://doi.org/10.3390/ma12122036

  16. Yoon DS, Choi Y, Jang Y, Lee M, Choi WJ, Kim SH, Lee JW (2014) SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32(12):3219–3231. https://doi.org/10.1002/stem.1811

    Article  CAS  PubMed  Google Scholar 

  17. Li M, Yan J, Chen X, Tam W, Zhou L, Liu T, Pan G, Lin J, Yang H, Pei M, He F (2018) Spontaneous up-regulation of SIRT1 during osteogenesis contributes to stem cells' resistance to oxidative stress. J Cell Biochem 119(6):4928–4944. https://doi.org/10.1002/jcb.26730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chong ZZ, Shang YC, Wang S, Maiese K (2012) SIRT1: new avenues of discovery for disorders of oxidative stress. Expert Opin Ther Targets 16(2):167–178. https://doi.org/10.1517/14728222.2012.648926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen W, Chen X, Chen AC, Shi Q, Pan G, Pei M, Yang H, Liu T, He F (2020) Melatonin restores the osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells by preserving SIRT1-mediated intracellular antioxidant properties. Free Radic Biol Med 146:92–106. https://doi.org/10.1016/j.freeradbiomed.2019.10.412

    Article  CAS  PubMed  Google Scholar 

  20. Zhou L, Chen X, Liu T, Gong Y, Chen S, Pan G, Cui W, Luo ZP, Pei M, Yang H, He F (2015) Melatonin reverses H2 O2 -induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway. J Pineal Res 59(2):190–205. https://doi.org/10.1111/jpi.12250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guan XH, Liu XH, Hong X, Zhao N, Xiao YF, Wang LF, Tang L, Jiang K, Qian YS, Deng KY, Ji G, Fu M, Xin HB (2016) CD38 Deficiency Protects the Heart from Ischemia/Reperfusion Injury through Activating SIRT1/FOXOs-Mediated Antioxidative Stress Pathway. Oxid Med Cell Longev 2016:7410257. https://doi.org/10.1155/2016/7410257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iyer S, Han L, Bartell SM, Kim HN, Gubrij I, de Cabo R, O'Brien CA, Manolagas SC, Almeida M (2014) Sirtuin1 (Sirt1) promotes cortical bone formation by preventing beta-catenin sequestration by FoxO transcription factors in osteoblast progenitors. J Biol Chem 289(35):24069–24078. https://doi.org/10.1074/jbc.M114.561803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cherian JJ, Jauregui JJ, Banerjee S, Pierce T, Mont MA (2015) What Host Factors Affect Aseptic Loosening After THA and TKA? Clin Orthop Relat Res 473(8):2700–2709. https://doi.org/10.1007/s11999-015-4220-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goodman SB, Gibon E, Pajarinen J, Lin TH, Keeney M, Ren PG, Nich C, Yao Z, Egashira K, Yang F, Konttinen YT (2014) Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J R Soc Interface 11(93):20130962. https://doi.org/10.1098/rsif.2013.0962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng Z, Wang Z, Jin J, Wang Y, Bao N, Gao Q, Zhao J (2017) SIRT1 protects osteoblasts against particle-induced inflammatory responses and apoptosis in aseptic prosthesis loosening. Acta Biomater 49:541–554. https://doi.org/10.1016/j.actbio.2016.11.051

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Huang Z, Gan J, Liu N, Zhou G, Shi T, Wang Z, Wang R, Bao N, Guo T, Chen J, Zhang J, Dong L, Zhao J (2015) The fibroblast expression of RANKL in CoCrMo-particle-induced osteolysis is mediated by ER stress and XBP1s. Acta Biomater 24:352–360. https://doi.org/10.1016/j.actbio.2015.06.024

    Article  CAS  PubMed  Google Scholar 

  27. Queally JM, Devitt BM, Butler JS, Malizia AP, Murray D, Doran PP, O'Byrne JM (2009) Cobalt ions induce chemokine secretion in primary human osteoblasts. J Orthop Res 27(7):855–864. https://doi.org/10.1002/jor.20837

    Article  CAS  PubMed  Google Scholar 

  28. Preedy EC, Perni S, Prokopovich P (2017) Cobalt and titanium nanoparticles influence on mesenchymal stem cell elasticity and turgidity. Colloids Surf B Biointerfaces 157:146–156. https://doi.org/10.1016/j.colsurfb.2017.05.019

    Article  CAS  PubMed  Google Scholar 

  29. He XB, Ma T, Zheng W, Geng QH, Guo KJ (2018) Nano-sized titanium alloy particles inhibit the proliferation and promote the apoptosis of bone marrow mesenchymal stem cells in vitro. Mol Med Rep 17(2):2271–2276. https://doi.org/10.3892/mmr.2017.8105

    Article  CAS  PubMed  Google Scholar 

  30. Haleem-Smith H, Argintar E, Bush C, Hampton D, Postma WF, Chen FH, Rimington T, Lamb J, Tuan RS (2012) Biological responses of human mesenchymal stem cells to titanium wear debris particles. J Orthop Res 30(6):853–863. https://doi.org/10.1002/jor.22002

    Article  CAS  PubMed  Google Scholar 

  31. Wong HS, Dighe PA, Mezera V, Monternier PA, Brand MD (2017) Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem 292(41):16804–16809. https://doi.org/10.1074/jbc.R117.789271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roth JA, Kim BG, Lin WL (1999) Melatonin Promotes Osteoblast Differentiation and Bone Formation. J Biol Chem 274(31):22041–22047

    Article  CAS  Google Scholar 

  33. Satomura K, Tobiume S, Tokuyama R, Yamasaki Y, Kudoh K, Maeda E, Nagayama M (2007) Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo. J Pineal Res 42(3):231–239. https://doi.org/10.1111/j.1600-079X.2006.00410.x

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Branicky R, Noe A, Hekimi S (2018) Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217(6):1915–1928. https://doi.org/10.1083/jcb.201708007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. García-Macia M, Vega-Naredo I, Gonzalo-Calvo DD, Rodríguez-González SM, Coto-Montes AM (2010) Melatonin induces neural SOD2 expression independent of the NF-kappaB pathway and improves the mitochondrial population and function in old mice. J Pineal Res 50(1):54–63

    Article  Google Scholar 

  36. Klotz LO, Sanchez-Ramos C, Prieto-Arroyo I, Urbanek P, Steinbrenner H, Monsalve M (2015) Redox regulation of FoxO transcription factors. Redox Biol 6:51–72. https://doi.org/10.1016/j.redox.2015.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang K, Huang J, Xie X, Wang S, Chen C, Shen X, Liu P, Huang H (2013) Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-beta1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic Biol Med 65:528–540. https://doi.org/10.1016/j.freeradbiomed.2013.07.029

    Article  CAS  PubMed  Google Scholar 

  38. Gertz M, Fischer F, Nguyen GT, Lakshminarasimhan M, Schutkowski M, Weyand M, Steegborn C (2013) Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proc Natl Acad Sci U S A 110(30):E2772–2781. https://doi.org/10.1073/pnas.1303628110

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rickenbacher A, Jang JH, Limani P, Ungethum U, Lehmann K, Oberkofler CE, Weber A, Graf R, Humar B, Clavien PA (2014) Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice. J Hepatol 61(2):301–308. https://doi.org/10.1016/j.jhep.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  40. Li Q, Gao Z, Chen Y, Guan MX (2017) The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells. Protein Cell 8(6):439–445. https://doi.org/10.1007/s13238-017-0385-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deng SL, Sun TC, Yu K, Wang ZP, Zhang BL, Zhang Y, Wang XX, Lian ZX, Liu YX (2017) Melatonin reduces oxidative damage and upregulates heat shock protein 90 expression in cryopreserved human semen. Free Radic Biol Med 113:347–354. https://doi.org/10.1016/j.freeradbiomed.2017.10.342

    Article  CAS  PubMed  Google Scholar 

  42. Zhou W, Liu Y, Shen J, Yu B, Bai J, Lin J, Guo X, Sun H, Chen Z, Yang H, Xu Y, Geng D (2019) Melatonin Increases Bone Mass around the Prostheses of OVX Rats by Ameliorating Mitochondrial Oxidative Stress via the SIRT3/SOD2 Signaling Pathway. Oxid Med Cell Longev 2019:4019619. https://doi.org/10.1155/2019/4019619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peng W, Xu S, Zhang J, Zhang Y (2019) Vitamin C Attenuates Sodium Fluoride-Induced Mitochondrial Oxidative Stress and Apoptosis via Sirt1-SOD2 Pathway in F9 Cells. Biol Trace Elem Res 191(1):189–198. https://doi.org/10.1007/s12011-018-1599-0

    Article  CAS  PubMed  Google Scholar 

  44. Liu T, Ma X, Ouyang T, Chen H, Xiao Y, Huang Y, Liu J, Xu M (2019) Efficacy of 5-aminolevulinic acid-based photodynamic therapy against keloid compromised by downregulation of SIRT1-SIRT3-SOD2-mROS dependent autophagy pathway. Redox Biol 20:195–203. https://doi.org/10.1016/j.redox.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  45. Li P, Wang X, Zhao M, Song R, Zhao K-S (2015) Polydatin protects hepatocytes against mitochondrial injury in acute severe hemorrhagic shock via SIRT1-SOD2 pathway. Expert opinion on therapeutic targets. https://doi.org/10.1517/14728222.2015.1054806

    Article  PubMed  Google Scholar 

  46. Li P, Song X, Zhang D, Guo N, Wu C, Chen K, Liu Y, Yuan L, Chen X, Huang X (2020) Resveratrol improves left ventricular remodeling in chronic kidney disease via Sirt1-mediated regulation of FoxO1 activity and MnSOD expression. BioFactors 46(1):168–179. https://doi.org/10.1002/biof.1584

    Article  CAS  PubMed  Google Scholar 

  47. Pan L, Lee YM, Lim TK, Lin Q, Xu X (2018) Quantitative proteomics study reveals changes in the molecular landscape of human embryonic stem cells with impaired stem cell differentiation upon exposure to titanium dioxide nanoparticles. Small 14(23):e1800190. https://doi.org/10.1002/smll.201800190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (31771063, 81871789); the Natural Science Foundation of Jiangsu Province (BK20180052); Research and Development of Biomedical Materials and Substitution of Tissue and Organ Repair under National Key R&D Program (2016YFC1101505).

Author information

Authors and Affiliations

Authors

Contributions

Yazhong Zhang and Fan He designed the research study; Yazhong Zhang, Xu Zhu, and Genlin Wang performed the experiments; Yazhong Zhang, Liang Chen, and Huilin Yang analyzed the data; Yazhong Zhang, Fan He, and Jun Lin wrote the paper. All authors approve of the final version to be published.

Corresponding authors

Correspondence to Fan He or Jun Lin.

Ethics declarations

Conflict of interest

Yazhong Zhang, Xu Zhu, Genlin Wang, Liang Chen, Huilin Yang, Fan He and Jun Lin declare that they have no conflicts of interest.

Research involving Human and Animal Rights

All aspects of this research were conducted in accordance with the Chinese Guidelines for Animal Welfare and Experimental Protocols. All animal experiments were performed under the approval of the Ethics Committee of the First Affiliated Hospital of Soochow University.

Informed Consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhu, X., Wang, G. et al. Melatonin Rescues the Ti Particle-Impaired Osteogenic Potential of Bone Marrow Mesenchymal Stem Cells via the SIRT1/SOD2 Signaling Pathway. Calcif Tissue Int 107, 474–488 (2020). https://doi.org/10.1007/s00223-020-00741-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00741-z

Keywords

Navigation