Skip to main content

Advertisement

Log in

Evapotranspiration over Land from a Boundary-Layer Meteorology Perspective

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

A Correction to this article was published on 28 November 2020

This article has been updated

Abstract

The precise determination of evapotranspiration rate is challenging because it is a quantity that is difficult to measure and to parametrize. Direct estimates include the determination of the change of mass of a volume of soil and vegetation that evapotranspirates using lysimeters, or direct measurements of turbulent water vapour fluxes by eddy-covariance systems. Parametrized estimates that make use of the Monin–Obukhov similarity theory use vertical gradient measurements of temperature and moisture at one point, and line or area averages by means of scintillometers operating at high frequency. A relation for the evapotranspiration from well-watered surfaces was initially developed by Penman and later expanded for vegetated surfaces and for heterogeneous croplands. A popular simplified expression was obtained by Priestley and Taylor. The current challenge is to find expressions for the evapotranspiration in non-saturated conditions, which are common in arid and semi-arid climates, and for heterogeneous terrain. In numerical models, the estimated actual evapotranspiration over land is obtained as the result of the explicit representation of the different involved sub-processes taking place in the soil and the canopy, using so-called land-surface models. Usually these mechanisms are described in a simplified manner and rely on a number of adjustable parameters. The improvement of such descriptions relies in the availability of experimental measurements to make the physical models more complete and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 28 November 2020

    The correct definition of the psychrometric constant in the Penman equation is provided depending on the variable of use, the specific humidity or the water vapour pressure.

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements, Irrigation and Drainage Paper 56. United Nations FAO, Rome, 300 p

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research. Springer, Dordrecht, pp 221–224

    Google Scholar 

  • Bélair S, Crevier L-P, Mailhot J, Bilodeau B, Delage Y (2003) Operational implementation of the ISBA land surfacescheme in the Canadian regional weather forecast model. Part I: warm season results. J Hydrometeorol 4:352–370

    Google Scholar 

  • Belcher SE, Harman IN, Finnigan JJ (2012) The wind in the willows: flows in forest canopies in complex terrain. Annu Rev Fluid Mech 44:479–504

    Google Scholar 

  • Best MJ, Abramowitz G, Johnson H, Pitman AJ, Boone A, Cuntz M, Decharme B, Dirmeyer PA, Dong J, Ek M, Haverd V, van den Hurk BJJM, Nearing GS, Pak B, Peters-Lidard C, Santanello JA Jr, Stevens L, Vuichard N (2015) The plumbing of land surface models. J Hydrometeorol 16:1425–1442

    Google Scholar 

  • Betts AK (1992) FIFE atmospheric boundary layer budget methods. J Geophys Res 97(D17):18523–18531

    Google Scholar 

  • Bhummralkar CM (1975) Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J Appl Meteorol 14:67–100

    Google Scholar 

  • Bliss AK, Cuffey KM, Kavanaugh JL (2011) Sublimation and surface energy budget of Taylor Glacier. Antarct J Glaciol 57(204):684–696

    Google Scholar 

  • Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, Swenson SC (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res Biogeosci 116(G2):G02014

    Google Scholar 

  • Bonan GB, Patton EG, Harman IN, Oleson KW, Finnigan JJ, Lu Y, Burakowski EA (2018) Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). Geosci Model Dev 11(1467–1496):2018

    Google Scholar 

  • Bonan B, Albergel C, Zheng Y, Barbu AL, Fairbairn D, Munier S, Calvet J-C (2020) An ensemble square root filter for the joint assimilation of surface soil moisture and leaf area index within the Land Data Assimilation System LDAS-Monde: application over the Euro-Mediterranean region. Hydrol Earth Syst Sci 24:325–347

    Google Scholar 

  • Bosilovich MG, Robertson FR, Chen J (2011) Global energy and water budgets in MERRA. J Clim 24(22):5721–5739

    Google Scholar 

  • Bouchet RJ (1963) Evapotranspiration réelle et potentielle, signification climatique. IAHS Publ 62:134–142

    Google Scholar 

  • Boussetta S, Balsamo G, Beljaars A, Panareda A-A, Calvet J-C, Jacobs C, van den Hurk B, Viterbo P, Lafont S, Dutra E, Jarlan L, Balzarolo M, Papale D, van der Werf G (2013) Natural land carbon dioxide exchangesin the ECMWF integrated forecasting system: implementation and offline validation. J Geophys Res Atmos 118(12):5923–5946

    Google Scholar 

  • Bou-Zeid E, Anderson W, Mahrt L (2020) The persistent challenge of surface heterogeneity in boundary-layer meteorology. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00551

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media, Hydrol. Pap. 3, Civ. Eng. Dep., Colo. State Univ., Fort Collins

  • Brubaker KL, Entekhabi D (1996) Analysis of feedback mechanisms in land–atmosphere interaction. Water Resour Res 32(5):1343–1357

    Google Scholar 

  • Brutsaert W (2015) A generalized complementary principle with physical constraints for land-surface evaporation. Water Resour Res 51(10):8087–8093

    Google Scholar 

  • Brutsaert W, Parlange MB (1998) Hydrologic cycle explains the evaporation paradox. Nature 396(6706):30

    Google Scholar 

  • Brutsaert W, Stricker H (1979) An advection-aridity approach to estimate actual regional evapotranspiration. Water Resour Res 15(2):443–450

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28(2):181–189

    Google Scholar 

  • Calvet JC, Noilhan J, Roujean J-L, Bessemoulin P, Cabelguenne M, Olioso A, Wigneron J-P (1998) An interactive vegetation SVAT model tested against data from six contrasting sites. Agric For Meteorol 92:73–95

    Google Scholar 

  • Calvet JC, Rivalland V, Picon-Cochard C, Guehl JM (2004) Modelling forest transpiration and \(\text{ CO}_2\) fluxes -response to soil moisture stress. Agric For Meteorol 124(3–4):143–156

    Google Scholar 

  • Carrera ML, Bélair S, Bilodeau B (2015) The Canadian Land Data Assimilation System (CaLDAS): description and synthetic evaluation study. J Hydrometeorol 16:1293–1314

    Google Scholar 

  • Chaney NW, Herman JD, Ek M, Wood E (2016) Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning. J Geophys Res Atmos 121:13218–13235

    Google Scholar 

  • Choudhury BJ, DiGirolamo NE (1998) A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data. I. Model description and comparison with observations. J Hydrol 205:164–185

    Google Scholar 

  • Choudhury BJ, Monteith JL (1988) A four-layer model for the heat budget of homogeneous land surfaces. Q J R Meteorol Soc 114(480):373–398

    Google Scholar 

  • Coll C, Caselles V, Galve JM, Valor E, Niclòs R, Sánchez JM, Rivas R (2005) Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sens Environ 97(3):288–300

    Google Scholar 

  • Collatz GJ, Ribas-Carbó M, Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of c4 plants. Funct Plant Biol 19(5):519–538

    Google Scholar 

  • Cristea NC, Kampf SK, Burges SJ (2013) Revised coefficients for Priestley–Taylor and Makkink–Hansen equations for estimating daily reference evapotranspiration. J Hydrol Eng 18(10):1289–1300

    Google Scholar 

  • Cuxart J, Conangla L, Jimenez MA (2015) Evaluation of the surface energy budget equation with experimental data and the ECMWF model in the Ebro Valley. J Geophys Res Atmos 120(3):1008–1022

    Google Scholar 

  • Cuxart J, Wrenger B, Martínez-Villagrasa D, Reuder J, Jonassen MO, Jiménez MA, Lothon M, Lohou F, Hartogensis O, Dünnermann J, Conangla L, Garai A (2016) Estimation of the advection effects induced by surface heterogeneities in the surface energy budget. Atmos Chem Phys 16:9489–9504

    Google Scholar 

  • Cuxart J, Verhoef A, Marthews TR, Evans J (2019) Current challenges in Evapotranspiration determination. Gewex News 29(1):5–8

    Google Scholar 

  • de Bruin HAR (1983) A model for the Priestley–Taylor parameter? J Appl Meteorol Clim 22(4):572–578

    Google Scholar 

  • de Bruin HAR (1987) From Penman to Makkink. In: Evaporation and weather: technical meeting 44, Ede, The Netherlands 25 March 1987. The Hague, Netherlands, pp 5–31. 1 fig, 4 tab, 34 ref

  • de Bruin HAR, Holtslag AAM (1982) A simple parameterization of the surface fluxes of sensible and latent heat during daytime compared with the Penman–Monteith concept. J Appl Meteorol Clim 21(11):1610–1621

    Google Scholar 

  • de Bruin HAR, Lablans WN (1998) Reference crop evapotranspiration determined with a modified Makkink equation. Hydrol Process 12(7):1053–1062

    Google Scholar 

  • de Bruin HAR, Trigo IF, Bosveld FC, Meirink JF (2016) A thermodynamically based model for actual evapotranspiration of an extensive grass field close to FAO Reference, suitable for remote sensing application. J Hydrometeorol 17(5):1373–1382

    Google Scholar 

  • De Roo F, Mauder M (2018) The influence of idealized surface heterogeneity on virtual turbulent flux measurements. Atmos Chem Phys 18(7):5059–5074

    Google Scholar 

  • Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res 83:1889–1903

    Google Scholar 

  • Desborough CE (1997) The impact of root weighting on the response of transpiration to moisture stress in land surface schemes. Mon Wea Rev 125(8):1920–1930

    Google Scholar 

  • Diaz-Espejo A, Verhoef A, Knight R (2005) Illustration of micro-scale advection using grid-pattern mini-lysimeters. Agric For Meteorol 129(1–2):39–52

    Google Scholar 

  • Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N (2006) GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull Am Meteorol Soc 87(10):1381–1398

    Google Scholar 

  • Dragoni D, Lakso AN, Piccioni RM (2005) Transpiration of apple trees in a humid climate using heat pulse sap flow gauges calibrated with whole-canopy gas exchange chambers. Agr For Meteorol 130(1–2):85–94

    Google Scholar 

  • Edwards JM (2009) Radiative processes in the stable boundary layer: Part I. Radiative aspects. Boundary-Layer Meteorol 131(2):105

    Google Scholar 

  • Eichinger WE, Cooper DI, Hipps LE, Kustas WP, Neale CMU, Prueger JH (2006) Spatial and temporal variation in evapotranspiration using Raman lidar. Adv Water Resour 29(2):369–381

    Google Scholar 

  • Ek MB, Holtslag AAM (2004) Influence of soil moisture on boundary layer cloud development. J Hydrometeorol 5(1):86–99

    Google Scholar 

  • Ek M, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J Geophys Res 108(D22):8851

    Google Scholar 

  • Escalona JM, Fuentes S, Tomàs M, Martorell S, Flexas J, Medrano H (2013) Responses of leaf night transpiration to drought stress in Vitis vinifera L. Agric Water Manag 118:50–58

    Google Scholar 

  • Farquhar G, von Caemmerer S, Berry J (1980) A biochemical model of photosynthetic CO. Planta 149(1):78–90. https://doi.org/10.1007/BF00386231

    Article  Google Scholar 

  • Finnigan JJ, Shaw RH, Patton EG (2009) Turbulence structure above a vegetation canopy. J Fluid Mech 637:387–424

    Google Scholar 

  • Flint AL, Childs SW (1991) Use of the Priestley–Taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agric For Meteorol 56(3–4):247–260

    Google Scholar 

  • Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119(3):431–447

    Google Scholar 

  • Foken T (2017) Micrometeorology, 2nd edn. Springer, Berlin

    Google Scholar 

  • Garcia-Carreras L, Parker DJ, Taylor CM, Reeves CE, Murphy JG (2010) Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J Geophys Res Atmos 115(D3):D13301

    Google Scholar 

  • Garcia-Gonzalez R, Verhoef A, Luigi Vidale P, Braud I (2012) Incorporation of water vapor transfer in the JULES land surface model: implications for key soil variables and land surface fluxes. Water Resour Res 48(5):W05538

    Google Scholar 

  • Gebler S, Franssen HH, Pütz T, Post H, Schmidt M, Vereecken H (2015) Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket. Hidrol Earth Syst Sci 19(5):2145

    Google Scholar 

  • Gentine P, Chhang A, Rigden A, Salvucci G (2016) Evaporation estimates using weather station data and boundary layer theory. Geophys Res Lett 43(22):11–661

    Google Scholar 

  • Girona J, Mata M, Ferreres E, Goldhamer DA, Cohen M (2002) Evapotranspiration and soil water dynamics of peach trees under water deficits. Agric Water Manag 54(2):107–122

    Google Scholar 

  • Goudriaan J (1986) A simple and fast numerical method for the computation of daily totals of crop photosynthesis. Agric For Meteorol 38:249–254

    Google Scholar 

  • Groh J, Vanderborght J, Pütz T, Vereecken H (2016) How to control the lysimeter bottom boundary to investigate the effect of climate change on soil processes? Vadose Zone J 15(7):1–15

    Google Scholar 

  • Groh J, Slawitsch V, Herndl M, Graf A, Vereecken H, Pütz T (2018) Determining dew and hoar frost formation for a low mountain range and alpine grassland site by weighable lysimeter. J Hydrol 563:372–381

    Google Scholar 

  • Groh J, Pütz T, Gerke HH, Vanderborght J, Vereecken H (2019) Quantification and prediction of nighttime evapotranspiration for two distinct grassland ecosystems. Water Resour Res 55(4):2961–2975

    Google Scholar 

  • Habets F, Boone A, Champeaux JL, Etchevers P, Leblois E, Ledoux E, Le Moigne P, Martin E, Morel S, Segui Q, Rousset-Regimbeau F, Viennot P (2008) The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France. J Geophys Res 113:D06113

    Google Scholar 

  • Hagemann S, Machenhauer B, Jones R, Christensen OB, Déqué M, Jacob D, Vidale PL (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Clim Dyn 23(5):547–567

    Google Scholar 

  • Han S, Hu H, Tian F (2012) A nonlinear function approach for the normalized complementary relationship evaporation model. Hydrol Process 26(26):3973–3981

    Google Scholar 

  • Hargreaves GH, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. J Irrig Drain E ASCE 129(1):53–63

    Google Scholar 

  • Harman IN (2012) The role of roughness sublayer dynamics within surface exchange schemes. Boundary-Layer Meteorol 142(1):1–20

    Google Scholar 

  • Heusinkveld BG, Berkowicz SM, Jacobs AF, Holtslag AA, Hillen WC (2006) An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions. J Hydrometeorol 7(4):825–832

    Google Scholar 

  • Hicks BB, Baldocchi D (2020) Measurements of fluxes over land-capabilities, origins, and remaining challenges. Boundary-Layer Meteorol

  • Hirschi M, Michel D, Lehner I, Seneviratne SI (2017) A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration. Hydrol Earth Syst Sci 21(3):1809–1825

    Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42:55–78

    Google Scholar 

  • Jacobs CMJ, van den Hurk BMM, de Bruin HAR (1996) Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions. Agric For Meteorol 80(24):111–134

    Google Scholar 

  • Jacobs AF, Heusinkveld BG, Holtslag AA (2008) Towards closing the surface energy budget of a mid-latitude grassland. Boundary-Layer Meteorol 126(1):125–136

    Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond Ser B 273:593–610

    Google Scholar 

  • Jasim UJ, Foley R, Hancock Smith N (2015) A new approach to estimate canopy evaporation and canopy interception capacity from evapotranspiration and sap flow measurements during and following wetting. Hydrol Process 30(11):1757–1767

    Google Scholar 

  • Jia Z, Liu S, Xu Z, Chen Y, Zhu M (2012) Validation of remotely sensed evapotranspiration over the Hai River Basin, China. J Geophys Res Atmos 117(D13):D13113

    Google Scholar 

  • Jiang L, Islam S (2001) Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour Res 37(2):329–340

    Google Scholar 

  • Jones HG (2013) Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Katul GG, Oren R, Manzoni S, Higgins C, Parlange MB (2012) Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophys 50(3):185–201

    Google Scholar 

  • Kim CP, Entekhabi D (1998) Feedbacks in the land-surface and mixed-layer energy budgets. Boundary-Layer Meteorol 88(1):1–21

    Google Scholar 

  • Kivalov SN, Fitzjarrald DR (2019) Observing the whole-canopy short-term dynamic response to natural step changes in incident light: characteristics of tropical and temperate forests. Boundary-Layer Meteorol 173(1):1–52

    Google Scholar 

  • Kooijmans LM, Hartogensis OK (2016) Surface-layer similarity functions for dissipation rate and structure parameters of temperature and humidity based on eleven field experiments. Boundary-Layer Meteorol 160(3):501–527

    Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudre N, Ogee J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem Cycles 19:GB1015

    Google Scholar 

  • Kumar S, Mocko DM, Wang S, Peters-Lidard CD, Borak J (2019) Assimilation of remotely sensed leaf area index into the Noah-MP land surface model: impacts on water and carbon fluxes and states over the continental United States. J Hydrometeorol 20(7):1359–1377

    Google Scholar 

  • Lee X, Massman W, Law B (eds) (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis, vol 29. Springer, Berlin

    Google Scholar 

  • Liu W, Wang L, Zhou J, Li Y, Sun F, Fu G, Li X, Sang YF (2016) A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. J Hydrol 538:82–95

    Google Scholar 

  • Lohou F, Patton EG (2014) Surface energy balance and buoyancy response to shallow cumulus shading. J Atmos Sci 71(2):665–682

    Google Scholar 

  • López-Urrea R, de Santa Olalla FM, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agric Water Manag 85(1–2):15–26

    Google Scholar 

  • Louis J-F (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17:187–202

    Google Scholar 

  • Mahfouf J-F, Noilhan J (1991) Comparative study of various formulations of evaporation from bare soil using in situ data. J Appl Meteorol 9:351–362

    Google Scholar 

  • Mahrt L (2014) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45

    Google Scholar 

  • Mahrt L, Pan HL (1984) A 2-layer model of soil hydrology. Boundary-Layer Meteorol 29:1–20

    Google Scholar 

  • Makkink GF (1957) Testing the Penman formula by means of lysimeters. J Inst Water Eng 11:277–288

    Google Scholar 

  • Mauder M, Foken T, Cuxart J (2020) Surface energy balance closure over land: a review. Boundary-Layer Meteorol 176(1):85–103

    Google Scholar 

  • McColl KA (2020) Practical and theoretical benefits of an alternative to the Penman–Monteith evapotranspiration equation. Water Resour Res e2020WR027106

  • McColl KA, Rigden AJ (2020) Emergent simplicity of continental evapotranspiration. Geophys Res Lett 47(6):e2020GL087101

    Google Scholar 

  • McColl KA, Salvucci GD, Gentine P (2019) Surface flux equilibrium theory explains an empirical estimate of water-limited daily evapotranspiration. J Adv Mod Earth Syst 11(7):2036–2049

    Google Scholar 

  • Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, de Bruin HAR (2002) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface-Flevoland field experiment. Boundary-Layer Meteorol 105(1):63–83

    Google Scholar 

  • Mengelkamp HT, Beyrich F, Heinemann G, Ament F, Bange J, Berger F, Huneke S (2006) Evaporation over a heterogeneous land surface. Bull Am Meteorol Soc 87(6):775–786

    Google Scholar 

  • Merlin O, Bitar AA, Rivalland V, Baziat P, Ceschia E, Dedieu G (2011) An analytical model of evaporation efficiency for unsaturated soil surfaces with an arbitrary thickness. J Appl Meteorol 50:457–471

    Google Scholar 

  • Meunier F, Rothfuss Y, Bariac T, Biron P, Richard P, Durand J-L, Couvreur V, Vanderborght J, Javaux M (2018) Measuring and modeling hydraulic lift of Lolium multiflorum using stable water isotopes. Vadose Zone J 17:160134

    Google Scholar 

  • Milly PCD (1992) Potential evaporation and soil moisture in general circulation models. J Clim 5:209–226

    Google Scholar 

  • Miralles DG, De Jeu RA, Gash JH, Holmes TR, Dolman AJ (2011) Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci 15:453–469

    Google Scholar 

  • Moene AF, Van Dam JC (2014) Transport in the atmosphere–vegetation–soil continuum. Cambridge University Press, Cambridge

    Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151(163):e187

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Symposia of the society for experimental biology, vol 19. Cambridge University Press, Cambridge, pp 205–234

  • Napoly A, Boone A, Samuelsson P, Gollvik S, Martin E, Seferian R, Carrer D, Decharme B, Jarlan L (2017) The interactions between soil–biosphere–atmosphere (ISBA) land surface model multi-energy balance (MEB) option in SURFEX—Part 2: model evaluation for local scale forest sites. Geosci Model Dev 10:1621–1644

    Google Scholar 

  • Naudts K, Ryder J, McGrath MJ, Otto J, Chen Y, Valade A, Bellasen V, Berhongaray G, Bonisch G, Campioli M, Ghattas J, De Groote T, Haverd V, Kattge J, MacBean N, Maignan F, Merila P, Peñuelas J, Peylin P, Pinty B, Pretzsch H, Schulze ED, Solyga D, Vuichard N, Yan Y, Luyssaert S (2015) A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes. Geosci Model Dev 8:2035–2065

    Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Wea Rev 117(3):536–549

    Google Scholar 

  • Or D, Lehmann P, Shahraeeni E, Shokri N (2013) Advances in soil evaporation physics—a review. Vadose Zone J 12(4):1–16

    Google Scholar 

  • Parlange MB, Katul GG (1992) An advection-aridity evaporation model. Water Resour Res 28(1):127–132

    Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9(6):857–861

    Google Scholar 

  • Pedruzo-Bagazgoitia X, Ouwersloot HG, Sikma M, Van Heerwaarden CC, Jacobs CMJ, Vila-Guerau de Arellano J (2017) Direct and diffuse radiation in the shallow cumulus–vegetation system: enhanced and decreased evapotranspiration regimes. J Hydrometeorol 18(6):1731–1748

    Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond Ser A Math Phys Sci 193(1032):120–145

    Google Scholar 

  • Pereira LS, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manag 147:4–20

    Google Scholar 

  • Pérez-Priego O, López-Ballesteros A, Sánchez-Cañete EP, Serrano-Ortiz P, Kutzbach L, Domingo F, Eugster W, Kowalski AS (2015) Analysing uncertainties in the calculation of fluxes using whole-plant chambers: random and systematic errors. Plant Soil 393(1–2):229–244

    Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Wea Rev 100(2):81–92

    Google Scholar 

  • Pütz T, Kiese R, Wollschläger U, Groh J, Rupp H, Zacharias S, Borg E (2016) TERENO-SOILCan: a lysimeter-network in Germany observing soil processes and plant diversity influenced by climate change. Environ Earth Sci 75(18):1242

    Google Scholar 

  • Raupach MR (1994) Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Boundary-Layer Meteorol 71:211–216

    Google Scholar 

  • Raupach MR (2000) Equilibrium evaporation and the convective boundary layer. Boundary-Layer Meteorol 96(1–2):107–142

    Google Scholar 

  • Rijtema PE (1965) An analysis of actual evapotranspiration. Doctoral dissertation, Pudoc

  • Roerink GJ, Su Z, Menenti M (2000) S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Phys Chem Earth Part B Hydrol Oceans Atmos 25(2):147–157

    Google Scholar 

  • Sakaguchi K, Zeng X (2009) Effects of soil wetness, plant litter,and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5). J Geophys Res 114:D01107

    Google Scholar 

  • Schrader F, Durner W, Fank J, Gebler S, Pütz T, Hannes M, Wollschläger U (2013) Estimating precipitation and actual evapotranspiration from precision lysimeter measurements. Procedia Environ Sci 19:543–552

    Google Scholar 

  • Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Masson V (2011) The AROME-France Convective-Scale operational model. Mon Wea Rev 139(3):976–991

    Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) The design of a Simple Biosphere model (SiB) for use within general circulation models. J Atmos Sci 43:505–531

    Google Scholar 

  • Sellers PJ, Heiser MD, Hall FG (1992) Relations between surface conductance and spectral vegetation indices at intermediate (100 \(\text{ m}^2\) to 15 \(\text{ km}^2\)) length scales. J Geophys Res 97:19033–19059

    Google Scholar 

  • Seneviratne SI, Lehner I, Gurtz J, Teuling AJ, Lang H, Moser U, Zappa M (2012) Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event. Water Resour Res 48(6):W06526

    Google Scholar 

  • Shuttleworth WJ (2007) Putting the vap into evaporation. Hydrol Earth Syst Sci 11(1):210–244

    Google Scholar 

  • Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops: an energy combination theory. Q J R Meteorol Soc 111(469):839–855

    Google Scholar 

  • Sikma M, Vilà-Guerau de Arellano J (2019) Substantial reductions in cloud cover and moisture transport by dynamic plant responses. Geophys Res Lett 46(3):1870–1878

    Google Scholar 

  • Sikma M, Vilà-Guerau de Arellano J, Pedruzo-Bagazgoitia X, Voskamp T, Heusinkveld BG, Anten NPR, Evers JB (2019) Impact of future warming and enhanced [CO2] on the vegetation? Cloud interaction. J Geophys Res Atmos 124(23):12444–12454

    Google Scholar 

  • Simó G, Martínez-Villagrasa D, Jiménez MA, Caselles V, Cuxart J (2018) Impact of the surface-atmosphere variables on the relation between air and Land Surface Temperatures. Pure Appl Geophys 175(11):3939–3953

    Google Scholar 

  • Simó G, Cuxart J, Jiménez MA, Martínez-Villagrasa D, Picos R, López-Grifol A, Martí B (2019) Observed atmospheric and surface variability on heterogeneous terrain at the hectometre scale and related advective transports. J Geophys Res Atmos 124(16):9407–9422

    Google Scholar 

  • Sinclair TR, Murphy CE, Knoerr KR (1976) Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. J Appl Ecol 13:813–829

    Google Scholar 

  • Snow AD, Christensen SD, Swain NR, Nelson EJ, Ames DP, Jones NL, Ding D, Noman NS, David CH, Pappenberger F, Zsoter E (2016) A high-resolution national-scale hydrologic forecast system from a global ensemble land surface model. J Am Water Res Assoc (JAWRA) 52(4):950–964

    Google Scholar 

  • Stewart JB (1988) Modelling surface conductance of pine forest. Agric For Meteorol 43(1):19–35

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geograph Rev 38(1):55–94

    Google Scholar 

  • Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8(4):758–769

    Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90(3):311–324

    Google Scholar 

  • Trigo IF, de Bruin H, Beyrich F, Bosveld FC, Gavilán P, Groh J, López-Urrea R (2018) Validation of reference evapotranspiration from Meteosat Second Generation (MSG) observations. Agric For Meteorol 259:271–285

    Google Scholar 

  • Trugman AT, Medvigy D, Mankin JS, Anderegg WRL (2018) Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys Res Lett 45(13):6495–6503

    Google Scholar 

  • Vallis GK, Parker DJ, Tobias SM (2019) A simple system for moist convection: the rainy-Benard model. J Fluid Mech 862:162–199. https://doi.org/10.1017/jfm.2018.954

    Article  Google Scholar 

  • Vila-Guerau de Arellano J, Ney P, Hartogensis O, de Boer H, van Diepen K, Emin D, de Groot G, Klosterhalfen A, Langensiepen M, Matveeva M, Miranda G, Moene A, Rascher U, Röckmann T, Adnew G, Graf A (2020) CloudRoots: integration of advanced instrumental techniques and process modelling of sub-hourly and sub-kilometre land-atmosphere interactions. Biogeosci Discus. https://doi.org/10.5194/bg-2020-132

    Article  Google Scholar 

  • van Den Hoof C, Vidale PL, Verhoef A, Vincke C (2013) Improved evaporative flux partitioning and carbon flux in the land surface model JULES: impact on the simulation of land surface processes in temperate Europe. Agric For Meteorol 181:108–124

    Google Scholar 

  • van den Hurk B, Best M, Dirmeyer P, Pitman A, Polcher J, Santanello J (2011) Acceleration of land surface model development over a decade of glass. Bull Am Meteorol Soc 92:1593–1600

    Google Scholar 

  • van Dijk AI, Gash JH, van Gorsel E, Blanken PD, Cescatti A, Emmel C, Montagnani L (2015) Rainfall interception and the coupled surface water and energy balance. Agric For Meteorol 214:402–415

    Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for prediction the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Google Scholar 

  • van Heerwaarden CC, Vila-Guerau de Arellano J, Moene AF, Holtslag AA (2009) Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Q J R Meteorol Soc 135(642):1277–1291

    Google Scholar 

  • van Heerwaarden CC, Mellado JP, De Lozar A (2014) Scaling laws for the heterogeneously heated free convective boundary layer. J Atmos Sci 71(11):3975–4000

    Google Scholar 

  • Verhoef A, Egea G (2014) Modeling plant transpiration under limited soil water: comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models. Agric For Meteorol 191:22–32

    Google Scholar 

  • Verhoef A, Diaz-Espejo A, Knight JR, Villagarcia L, Fernandez JE (2006) Adsorption of water vapor by bare soil in an olive grove in southern Spain. J Hydrometeorol 7(5):1011–1027

    Google Scholar 

  • Verhoef A, Cuxart J, Marthews TR, Evans J, van Oevelen P (2020) Report on the first determining evapotranspiration workshop. GEWEX Q 30(1):p16

    Google Scholar 

  • Wang J, Bras RL (2009) A model of surface heat fluxes based on the theory of maximum entropy production. Water Resour Res 45(11):W11422

    Google Scholar 

  • Wang J, Bras RL (2011) A model of evapotranspiration based on the theory of maximum entropy production. Water Resour Res 47(3):W03521

    Google Scholar 

  • Wang YP, Leuning R (1998) A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: model description and comparison with a multi-layered model. Agric For Meteorol 91(1–2):89–111

    Google Scholar 

  • Wang J, Salvucci GD, Bras RL (2004) An extremum principle of evaporation. Water Resour Res 40(9):W09303

    Google Scholar 

  • Wang D, Wang G, Anagnostou EN (2007) Evaluation of canopy interception schemes in land surface models. J Hydrol 347:308–318

    Google Scholar 

  • Ward HC, Evans JG, Hartogensis OK, Moene AF, de Bruin HAR, Grimmond CSB (2013) A critical revision of the estimation of the latent heat flux from two-wavelength scintillometry. Q J R Meteorol Soc 139(676):1912–1922

    Google Scholar 

  • Wetzel PJ, Chang JT (1987) Concerning the relationship between evapotranspiration and soil moisture. J Clim Appl Meteorol 26:18–27

    Google Scholar 

  • Wilson T, Meyers T, Kochendorfer J, Anderson M, Heuer M (2012) The effect of soil surface litter residue on energy and carbon fluxes in a deciduous forest. Agric For Meteorol 161:134–147

    Google Scholar 

  • Woods DB, Turner NC (1971) Stomatal response to changing light by four tree species of varying shade tolerance. New Phytol 70(1):77–84

    Google Scholar 

  • Wulfmeyer V, Pal S, Turner DD, Wagner E (2010) Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Boundary-Layer Meteorol 136(2):253–284

    Google Scholar 

  • Yang Z-L, Niu G-Y, Mitchell KE, Chen F, Ek MB, Barlage M, Longuevergne L, Manning K, Niyogi D, Tewari M, Xia Y (2011) The community Noah land surface model with multi-parameterization options (Noah-MP): 2. Evaluation over global river basins. J Geophys Res 116:D12110

    Google Scholar 

  • Zhang K, Kimball JS, Running SW (2016) A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip Rev Water 3(6):834–853

    Google Scholar 

  • Zhu Y, Ren L, Horton R, Lu H, Wang Z, Yuan F (2018) Estimating the contribution of groundwater to the root zone of winter wheat, using root density distribution functions. Vadose Zone J 17:170075

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the input of an anonymous reviewer that greatly contributed to the final form of the paper. Comments on the revised version were provided by Jordi Vilà-Guerau de Arellano, Anne Verhoef, Jannis Groh and Alexander Graf. Discussions with colleagues under the auspices of the GEWEX Evapotranspiration Working Group initiated at the 8th GEWEX Open Science Conference in Canmore, Canada in 2018 and then at the GEWEX Hydroclimatology Panel Workshop ‘Determining Evapotranspiration’, Sydney, Australia in 2019, have been a source of inspiration for this work. Funding has been provided by the Spanish research project of FEDER/Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación, RTI2018-098693-B-C31.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cuxart.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuxart, J., Boone, A.A. Evapotranspiration over Land from a Boundary-Layer Meteorology Perspective. Boundary-Layer Meteorol 177, 427–459 (2020). https://doi.org/10.1007/s10546-020-00550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00550-9

Keywords

Navigation