Skip to main content
Log in

A geometric Gauss–Newton method for least squares inverse eigenvalue problems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the least squares inverse eigenvalue problem of reconstructing a linear parameterized real symmetric matrix from the prescribed partial eigenvalues in the sense of least squares, which was originally proposed by Chen and Chu (SIAM J Numer Anal 33:2417–2430, 1996). We provide a geometric Gauss–Newton method for solving the least squares inverse eigenvalue problem. The global and local convergence analysis of the proposed method is established under some assumptions. Also, a preconditioned conjugate gradient method with an efficient preconditioner is proposed for solving the geometric Gauss–Newton equation. Finally, some numerical tests, including an application in the inverse Sturm–Liouville problem, are reported to illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Absil, P.-A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7, 303–330 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  3. Absil, P.-A., Malick, J.: Projection-like retractions on matrix manifolds. SIAM J. Optim. 22, 135–158 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Adler, R.L., Dedieu, J.-P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22, 359–390 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Barrett, W., Butler, S., Fallat, S.M., Hall, H.T., Hogben, L., Lin, J.C.-H., Shader, B.L., Young, M.: The inverse eigenvalue problem of a graph: multiplicities and minors. arXiv:1708.00064 (2017)

  6. Barrett, W., Nelson, C.G., Sinkovic, J.H., Yang, T.: The combinatorial inverse eigenvalue problem II: all cases for small graphs. Electron. J. Linear Algebra 27, 742–778 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bernstein, D.S.: Matrix Mathematics-Theory, Facts, and Formulas, 2nd edn. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  8. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  9. Brussaard, P.J., Glaudemans, P.W.M.: Shell Model Applications in Nuclear Spectroscopy. North-Holland Publishing Company, Amsterdam (1977)

    Google Scholar 

  10. Chen, X.Z., Chu, M.T.: On the least-squares solution of inverse eigenvalue problems. SIAM J. Numer. Anal. 33, 2417–2430 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Chu, M.T.: Inverse eigenvalue problems. SIAM Rev. 40, 1–39 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Chu, M.T., Driessel, K.R.: Constructing symmetric nonnegative matrices with prescribed eigenvalues by differential equations. SIAM J. Math. Anal. 22, 1372–1387 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Chu, M.T., Golub, G.H.: Structured inverse eigenvalue problems. Acta Numer. 11, 1–71 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Chu, M.T., Golub, G.H.: Inverse Eigenvalue Problems: Theory, Algorithms, and Applications. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  15. Chu, M.T., Guo, Q.: A numerical method for the inverse stochastic spectrum problem. SIAM J. Matrix Anal. Appl. 19, 1027–1039 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Coleman, R.: Calculus on Normed Vector Spaces. Springer, New York (2012)

    MATH  Google Scholar 

  17. Cox, S.J., Embree, M., Hokanson, J.M.: One can hear the composition of a string: experiments with an inverse eigenvalue problem. SIAM Rev. 54, 157–178 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Dai, H., Bai, Z.Z., Wei, Y.: On the solvability condition and numerical algorithm for the parameterized generalized inverse eigenvalue problem. SIAM J. Matrix Anal. Appl. 36, 707–726 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Dalmolin, Q., Oliveira, R.: Inverse eigenvalue problem applied to weight optimisation in a geodetic network. Surv. Rev. 43, 187–198 (2011)

    Google Scholar 

  20. Datta, B.N.: Numerical Methods for Linear Control Systems: Design and Analysis. Elsevier Academic Press, London (2003)

    Google Scholar 

  21. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  22. Friedland, S.: The reconstruction of a symmetric matrix from the spectral data. J. Math. Anal. Appl. 71, 412–422 (1979)

    MathSciNet  MATH  Google Scholar 

  23. Friedland, S., Nocedal, J., Overton, M.L.: The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J. Numer. Anal. 24, 634–667 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Friswell, M.I., Mottershead, J.E.: Finite Element Model Updating in Structural Dynamics. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  25. Gladwell, G.M.L.: Inverse Problems in Vibration. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  26. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  27. Gratton, S., Lawless, A.S., Nichols, N.K.: Approximate Gauss–Newton methods for nonlinear least squares problems. SIAM J. Optim. 18, 106–132 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Hager, W.W.: Updating the inverse of a matrix. SIAM Rev. 31, 221–239 (1989)

    MathSciNet  MATH  Google Scholar 

  29. Hald, O.H.: The inverse Sturm–Liouville problem and the Rayleigh–Ritz method. Math. Comput. 32, 687–705 (1978)

    MathSciNet  MATH  Google Scholar 

  30. Helmke, U., Moore, J.B.: Optimization and Dynamical Systems. Springer, London (1994)

    MATH  Google Scholar 

  31. Hogben, L.: Spectral graph theory and the inverse eigenvalue problem of a graph. Electron. J. Linear Algebra 14, 12–31 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  33. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22, 596–627 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  35. Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Bloch, A. (ed.) Hamiltonian and Gradient Flows, Algorithms and Control. Fields Institute Communications, vol. 3, pp. 113–136. AMS, Providence (1994)

    Google Scholar 

  36. Singh, K.V.: Transcendental inverse eigenvalue problems in damage parameter estimation. Mech. Syst. Signal Process. 23, 1870–1883 (2009)

    Google Scholar 

  37. Singh, K.V., Ram, Y.M.: A transcendental inverse eigenvalue problem associated with longitudinal vibrations in rods. AIAA J. 44, 317–332 (2006)

    Google Scholar 

  38. Tao, G.W., Zhang, H.M., Chang, H.L., Choubey, B.: Inverse eigenvalue sensing in coupled micro/nano system. J. Microelectromech. Syst. 27, 886–895 (2018)

    Google Scholar 

  39. Toman, S., Pliva, J.: Multiplicity of solutions of the inverse secular problem. J. Mol. Spectrosc. 21, 362–371 (1966)

    Google Scholar 

  40. Tropp, J.A., Dhillon, I.S., Heath, R.W.: Finite-step algorithms for constructing optimal CDMA signature sequences. IEEE Trans. Inf. Theory 50, 2916–2921 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Wang, Z.B., Vong, S.W.: A Gauss-Newton-like method for inverse eigenvalue problems. Int. J. Comput. Math. 90, 1435–1447 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Wolf, M.M., Perez-Garcia, D.: The inverse eigenvalue problem for quantum channels. arXiv:1005.4545 (2010)

  43. Xu, S.F.: An Introduction to Inverse Algebraic Eigenvalue Problems. Peking University Press, Beijing (1998)

    MATH  Google Scholar 

  44. Yao, T.T., Bai, Z.J., Zhao, Z., Ching, W.K.: A Riemannian Fletcher–Reeves conjugate gradient method for doubly stochastic inverse eigenvalue problems. SIAM J. Matrix Anal. Appl. 37, 215–234 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Zhao, Z., Bai, Z.J., Jin, X.Q.: A Riemannian Newton algorithm for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 752–774 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Zhao, Z., Bai, Z.J., Jin, X.Q.: A Riemannian inexact Newton-CG method for constructing a nonnegative matrix with prescribed realizable spectrum. Numer. Math. 140, 827–855 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Zhao, Z., Jin, X.Q., Bai, Z.J.: A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems. SIAM J. Numer. Anal. 54, 2015–2035 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the editor and the referees for their valuable comments and suggestions, which have considerably improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Jian Bai.

Additional information

Communicated by Michiel E. Hochstenbach.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSFC Nos. 11701514, 11671337, 11601112. The research of Z. J. Bai was partially supported by the Fundamental Research Funds for the Central Universities (No. 20720180008). The research of X. Q. Jin was supported by the research grant MYRG2016-00077-FST from University of Macau.

Appendix A

Appendix A

In this appendix, we deduce (2.4) and (2.6). To derive the Riemannian differential of \(H:\mathscr {Z}\rightarrow \mathbb {SR}^{n\times n}\) defined by (2.2), we consider the following extended mapping

$$\begin{aligned} \widetilde{H} : \mathbb {R}^{l} \times \mathbb {R}^{n\times n} \times \mathscr {D}(n-m) \rightarrow \mathbb {SR}^{n\times n}, \end{aligned}$$
(A.1)

which is defined by

$$\begin{aligned} \widetilde{H} (\mathbf {c},Q,\varLambda ):= A(\mathbf {c}) - Q\overline{\varLambda }Q^T, \end{aligned}$$

for all \((\mathbf {c}, Q, \varLambda )\in \mathbb {R}^{l} \times \mathbb {R}^{n\times n} \times \mathscr {D}(n-m)\), where \(\overline{\varLambda }\) is defined as in (2.1). Thus the map H is the restriction of \(\widetilde{H}\) from the Euclidean space \(\mathbb {R}^{l} \times \mathbb {R}^{n\times n} \times \mathscr {D}(n-m)\) to the Riemannian product manifold \(\mathscr {Z}\), i.e., \(H =\widetilde{H}|_{\mathscr {Z}}\).

Similar to [2, (3.17)], for any \((\varDelta \mathbf {c},\varDelta Q, \varDelta \varLambda ) \in T_{(\mathbf {c},Q,\varLambda )}\mathscr {Z}\), one has

$$\begin{aligned} \mathrm {D}H(\mathbf {c},Q,\varLambda )[ (\varDelta \mathbf {c}, \varDelta Q, \varDelta \varLambda ) ] =\mathrm {D}\widetilde{H}(\mathbf {c},Q,\varLambda )[ (\varDelta \mathbf {c}, \varDelta Q, \varDelta \varLambda ) ]. \end{aligned}$$
(A.2)

For a tangent vector \((\varDelta \mathbf {c},\varDelta Q, \varDelta \varLambda ) \in T_{(\mathbf {c},Q,\varLambda )}\mathscr {Z}\), the matrix \(\varDelta QQ^T\) is skew-symmetric [2, (3.26)], i.e.,

$$\begin{aligned} (\varDelta QQ^T)^T = -\varDelta QQ^T. \end{aligned}$$
(A.3)

By the definition of P in (2.5) we have

$$\begin{aligned} \mathrm{blkdiag} (\mathbf{0}_m ,\varDelta \varLambda ) = P \varDelta \varLambda P^T. \end{aligned}$$
(A.4)

Using (2.1), (2.5), (A.1), (A.3), and (A.4) we have

$$\begin{aligned}&\widetilde{H}(\mathbf {c}+t\varDelta \mathbf {c},Q +t\varDelta Q, \varLambda + t\varDelta \varLambda ) \\&\quad = A(\mathbf {c}+t\varDelta \mathbf {c}) -(Q+t\varDelta Q)\,\mathrm{blkdiag}\big (\varLambda ^*_m,\; \varLambda +t\varDelta \varLambda \big )(Q+t\varDelta Q)^T \\&\quad = A(\mathbf {c}+t\varDelta \mathbf {c}) -(Q+t\varDelta Q)\overline{\varLambda }(Q+t\varDelta Q)^T\\&\qquad -\,(Q+t\varDelta Q)\,\mathrm{blkdiag}\big (\mathbf{0}_m ,\;t\varDelta \varLambda \big )(Q+t\varDelta Q)^T \\&\quad = \widetilde{H}(\mathbf {c},Q,\varLambda ) + t(A(\varDelta \mathbf {c})-A_0) + t[ Q\overline{\varLambda } Q^T , \varDelta QQ^T ]\\&\qquad -\,t(QP)\varDelta \varLambda (QP)^T + O(t^2), \end{aligned}$$

where \(t\in {\mathbb {R}}\). Based on Proposition 2.5 in [16] and the above equality, we have

$$\begin{aligned}&\mathrm {D}\widetilde{H}(\mathbf {c},Q,\varLambda ) [(\varDelta \mathbf {c}, \varDelta Q, \varDelta \varLambda )] \\&\quad =\displaystyle \lim \limits _{t\rightarrow 0} \frac{\widetilde{H}(\mathbf {c}+t\varDelta \mathbf {c},Q +t\varDelta Q, \varLambda + t\varDelta \varLambda ) -\widetilde{H}(\mathbf {c},Q, \varLambda )}{t}\\&\quad =(A(\varDelta \mathbf {c})-A_0) + [ Q\overline{\varLambda } Q^T ,\varDelta QQ^T ] -(QP)\varDelta \varLambda (QP)^T. \end{aligned}$$

This, together with (A.2), yields

$$\begin{aligned}&\mathrm {D}H(\mathbf {c},Q,\varLambda ) [(\varDelta \mathbf {c}, \varDelta Q, \varDelta \varLambda )]\nonumber \\&\quad =(A(\varDelta \mathbf {c})-A_0) + [ Q\overline{\varLambda } Q^T ,\varDelta QQ^T ] -(QP)\varDelta \varLambda (QP)^T, \end{aligned}$$
(A.5)

for all \((\mathbf {c}, Q, \varLambda )\in \mathscr {Z}\) and \((\varDelta \mathbf {c},\varDelta Q, \varDelta \varLambda ) \in T_{(\mathbf {c},Q,\varLambda )}\mathscr {Z}\), and thus (2.4) holds.

Let \((\mathbf {c}, Q, \varLambda )\in \mathscr {Z}\). For the Riemannian differential \(\mathrm {D}H(\mathbf {c},Q,\varLambda )\) and its adjoint \((\mathrm {D}H(\mathbf {c},Q,\varLambda ))^*\) with respect to the Riemannian metric g, one has [2, p. 185],

$$\begin{aligned}&\mathrm{tr}\big (\varDelta Z^T \mathrm {D}H(\mathbf {c},Q,\varLambda )[(\varDelta \mathbf {c}, \varDelta Q, \varDelta \varLambda )] \big )\nonumber \\&\quad = g_{(\mathbf {c},Q,\varLambda )} \big ((\mathrm {D}H(\mathbf {c},Q,\varLambda ))^*[ \varDelta Z], (\varDelta \mathbf {c}, \varDelta Q, \varDelta \varLambda ) \big ), \end{aligned}$$
(A.6)

for any \((\varDelta \mathbf {c},\varDelta Q, \varDelta \varLambda ) \in T_{(\mathbf {c},Q,\varLambda )}\mathscr {Z}\) and \(\varDelta Z \in T_{H(\mathbf {c},Q,\varLambda )}\mathbb {SR}^{n\times n}\). Using (3.36) in [2], the definition of the linear operator \(\mathbf {v}\) in (2.7), (A.5), and (A.6) we have

$$\begin{aligned}&\mathrm{tr}\big ( \varDelta Z\;\mathrm {D}H(\mathbf {c},Q,\varLambda )[(\varDelta \mathbf {c}, \varDelta Q, \varDelta \varLambda )] \big ) \\&\quad =\mathrm{tr}\big ( \varDelta Z(A(\varDelta \mathbf {c})-A_0) \big ) -\mathrm{tr}\big ( \varDelta Z Q\overline{\varLambda } (\varDelta Q)^T\big )\\&\qquad -\,\mathrm{tr}\big (\varDelta Z (\varDelta Q)\overline{\varLambda } Q^T\big ) -\mathrm{tr}\big (\varDelta Z (QP)\varDelta \varLambda (QP)^T \big ) \\&\quad = \mathrm{tr}\big ( \varDelta Z \sum \limits _{i=1}^{m} (\varDelta \mathbf {c})_iA_i \big ) -2\mathrm{tr}\big ( (\varDelta Z Q\overline{\varLambda })^T\varDelta Q \big ) - \mathrm{tr}\big ( (QP)^T\varDelta Z (QP) \varDelta \varLambda \big ) \\&\quad = \sum \limits _{i=1}^{m} (\varDelta \mathrm {c})_i \mathrm{tr}(A_i^T\varDelta Z) -2\mathrm{tr}\big ( \big (Q\,\mathrm{skew}(Q^T\varDelta Z Q\overline{\varLambda })\big )^T\varDelta Q \big )\\&\qquad -\, \mathrm{tr}\big ( (QP)^T\varDelta Z (QP) \varDelta \varLambda \big ) \\&\quad = \big (\mathbf {v}(\varDelta Z)\big )^T\varDelta \mathbf {c} + \mathrm{tr}\big ( ([ Q\overline{\varLambda } Q^T , \varDelta Z ]Q)^T \varDelta Q \big ) -\mathrm{tr}\big (\mathrm{Diag}\big ((QP)^T\varDelta Z (QP)\big ) \varDelta \varLambda \big ) \\&\quad =g_{(\mathbf {c},Q,\varLambda )} \big (\mathbf {v} (\varDelta Z), [ Q\overline{\varLambda } Q^T ,\varDelta Z ]Q, -\mathrm{Diag}\big ((QP)^T\varDelta Z (QP)\big ), (\varDelta \mathbf {c}, \varDelta Q, \varDelta \varLambda )\big ) \\&\quad =g_{(\mathbf {c},Q,\varLambda )} \big ((\mathrm {D}H(\mathbf {c}, Q,\varLambda ))^*[ \varDelta Z], (\varDelta \mathbf {c}, \varDelta Q, \varDelta \varLambda ) \big ), \end{aligned}$$

where \(\mathrm{skew}(A):=\frac{1}{2}(A-A^T)\). Thus,

$$\begin{aligned} (\mathrm {D}H(\mathbf {c},Q,\varLambda ))^* [ \varDelta Z] =\big (\mathbf {v}(\varDelta Z), [ Q\overline{\varLambda } Q^T , \varDelta Z ]Q, -\mathrm{Diag}\big ((QP)^T\varDelta Z (QP)\big )\big ) \end{aligned}$$

for all \(\varDelta Z \in T_{H(\mathbf {c},Q,\varLambda )}\mathbb {SR}^{n\times n}\). This proves (2.6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, TT., Bai, ZJ., Jin, XQ. et al. A geometric Gauss–Newton method for least squares inverse eigenvalue problems. Bit Numer Math 60, 825–852 (2020). https://doi.org/10.1007/s10543-019-00798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00798-9

Keywords

Mathematics Subject Classification

Navigation