Skip to main content
Log in

Analysis of an approximation to a fractional extension problem

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this article is to study an approximation to an abstract Bessel-type problem, which is a generalization of the extension problem associated with fractional powers of the Laplace operator. Motivated by the success of such approaches in the analysis of time-stepping methods for abstract Cauchy problems, we adopt a similar framework herein. The proposed method differs from many standard techniques, as we approximate the true solution to the abstract problem, rather than solve an associated discrete problem. The numerical method is shown to be consistent, stable, and convergent in an appropriate Banach space. These results are built upon well understood results from semigroup theory. Numerical experiments are provided to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation, Chelmsford (1965)

    MATH  Google Scholar 

  2. Antil, H., Otárola, E.: A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53(6), 3432–3456 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arendt, W., Elst, A.F.M.T., Warma, M.: Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator. Commun. Partial Differ. Equ. 43(1), 1–24 (2018). https://doi.org/10.1080/03605302.2017.1363229

    Article  MathSciNet  Google Scholar 

  4. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  5. Bonito, A., Lei, W., Pasciak, J.E.: Numerical approximation of the integral fractional Laplacian. Numer. Math. 142(2), 235–278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Budd, C.J., Iserles, A.: Geometric integration: numerical solution of differential equations on manifolds. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357(1754), 945–956 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007). https://doi.org/10.1080/03605300600987306

    Article  MathSciNet  MATH  Google Scholar 

  8. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–332 (2002)

    Article  Google Scholar 

  9. Chen, L., Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion: a posteriori error analysis. J. Comput. Phys. 293, 339–358 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cushman, J.H., Ginn, T.R.: Nonlocal dispersion in media with continuously evolving scales of heterogeneity. Transp. Porous Media 13(1), 123–138 (1993)

    Article  Google Scholar 

  11. Deimling, K.: Nonlinear Functional Analysis. Courier Corporation, Chelmsford (2010)

    MATH  Google Scholar 

  12. D‘Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7), 1245–1260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, Berlin (2002)

    MATH  Google Scholar 

  14. Galé, J.E., Miana, P.J., Stinga, P.R.: Extension problem and fractional operators: semigroups and wave equations. J. Evol. Equ. 13(2), 343–368 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  16. Hansen, E., Henningsson, E.: A convergence analysis of the Peaceman–Rachford scheme for semilinear evolution equations. SIAM J. Numer. Anal. 51(4), 1900–1910 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, vol. 840. Springer, Berlin (2006)

    Google Scholar 

  18. Huang, Y., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52(6), 3056–3084 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2nd edn. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  20. Jones, T., Gonzalez, L.P., Guha, S., Sheng, Q.: A continuing exploration of a decomposed compact method for highly oscillatory wave problems. J. Comput. Appl. Math. 299, 207–220 (2016). https://doi.org/10.1016/j.cam.2015.11.044. Recent Advances in Numerical Methods for Systems of Partial Differential Equations

    Article  MathSciNet  MATH  Google Scholar 

  21. Lumer, G., Phillips, R.S.: Dissipative operators in a Banach space. Pac. J. Math. 11(2), 679–698 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martinez, C., Sanz, M.: The Theory of Fractional Powers of Operators, vol. 187. Elsevier, Amsterdam (2001)

    MATH  Google Scholar 

  23. Meichsner, J., Seifert, C.: Fractional powers of non-negative operators in Banach spaces via the Dirichlet-to-Neumann operator. arXiv preprint arXiv:1704.01876 (2017)

  24. Munthe-Kaas, H.Z., Føllesdal, K.K.: Lie–Butcher series, geometry, algebra and computation. In: Discrete Mechanics, Geometric Integration and Lie–Butcher Series, pp. 71–113. Springer (2018)

  25. Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nochetto, R.H., Otarola, E., Salgado, A.J.: A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54(2), 848–873 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Padgett, J.L., Sheng, Q.: On the positivity, monotonicity, and stability of a semi-adaptive LOD method for solving three-dimensional degenerate Kawarada equations. J. Math. Anal. Appl. 439, 465–480 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Padgett, J.L., Sheng, Q.: Numerical solution of degenerate stochastic kawarada equations via a semi-discretized approach. Appl. Math. Comput. 325, 210–226 (2018). https://doi.org/10.1016/j.amc.2017.12.034

    Article  MathSciNet  MATH  Google Scholar 

  29. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Söderlind, G.: The logarithmic norm. history and modern theory. BIT Numer. Math. 46(3), 631–652 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stinga, P.R., Torrea, J.L.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35(11), 2092–2122 (2010). https://doi.org/10.1080/03605301003735680

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF Grant Number 1903450. The author would like to thank Akif Ibraguimov, of Texas Tech University, for introducing this problem to them. The author is also thankful for Akif’s time and insightful suggestions that greatly improved the quality of the work herein. Finally, the author is thankful to the reviewers who provided numerous useful suggestions that greatly improved the presentation of the numerical experiments in Sect. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua L. Padgett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padgett, J.L. Analysis of an approximation to a fractional extension problem. Bit Numer Math 60, 715–739 (2020). https://doi.org/10.1007/s10543-019-00787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00787-y

Keywords

Mathematics Subject Classification

Navigation