Skip to main content
Log in

Petrography and authigenic chlorite in the Siegenian reservoir rocks, Berkine Basin, eastern Algerian Sahara

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In Berkine Basin, the Siegenian stage is constituted by clayey sandstones and it contains several reservoir levels especially in the perimeter of Zemlet El Arbi, where the sandstone levels can reach 30 m of thickness. The Siegenian reservoir shows a tidal deposit environment, it is located at depths greater than 3200 m, its average thickness is 200 m in the south and it decreases to 30 m because it is strongly affected by Hercynian orogeny mainly in the northwest of the studied area. Petrographic and X-ray diffraction studies indicate the presence of authigenic chlorite, which is the most important cement in Siegenian sandstones. Chlorite appears in different forms: grain coating, pore lining, pore filling and rarely in the form of oolite. It often has a great impact on petrophysical reservoir qualities by inhibiting authigenic quartz overgrowth in porous space and preserving porosity. Other diagenetic phenomena observed are mechanical compaction, alteration and dissolution of feldspars and biotite, precipitation of clay minerals (smectite, berthierine, chlorite, kaolinite and illite) and precipitation of secondary silica, carbonates, pyrite and haematite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aagaard P, Jahren JS, Harstad AO, Nilsen O, Ramm M (2000) Formation of grain-coating chlorite in sandstones. Laboratory synthesized vs. natural occurrences. Clay Miner 35:261–269

    Article  Google Scholar 

  • Ajdukieicz JM, Larese RE (2012) How clay grain coats inhibit quartz cement and preserve porosity in deeply buried sandstones: observations and experiments. AAPG Bull 96:2091–2119

    Article  Google Scholar 

  • Anjos SMC, De Ros LF, Silva CMA (eds) (2003) Chlorite authigenesis and porosity preservation in the Upper Cretaceous marine sandstones of the Santos Basin, offshore eastern Brazil. In: Worden RH, Morad S. Clay cements in sandstones. International Association of Sedimentologists Special Publications, 34, 291–316

  • Baker JC, Havord PJ, Martin KR, Ghori KAR (2000) Diagenesis and petrophysics of the Early Permian Moogooloo Sandstone, southern Carnarvon Basin, Western Australia. AAPG Bull 84:250–265

    Google Scholar 

  • Beard DC, Weyl PK (1973) Influence of texture on porosity and permeability of unconsolidated sand. Am Assoc Petroleum Geol Bull 57:348–369

    Google Scholar 

  • Beaufort D, Rigault C, Billon S, Billault V, Inoue A, Inoue S, Patrier P (2015) Chlorite and chloritization processes through mixed-layer mineral series in low temperature geological systems: a review. Clay Miner 50:497–523

    Article  Google Scholar 

  • Behlis AB, De Ros LF (2013) Origin and impact of authigenic chlorite in the Upper Cretaceous sandstone reservoirs of the Santos Basin, eastern Brazil. Pet Geosci 19:185–199

    Article  Google Scholar 

  • Bekkouche D (1992) Le Silurien supérieur-Dévonien inferieur du bassin de Berkine (Sahara oriental algérien) : Lithostratigraphie sédimentologie et diagenèse des réservoirs gréseux. Thèse de doctorat en science, Université Joseph-Fourier - Grenoble I, 261 pages

  • Berger A, Gier S, Krois P (2009) Porosity-preserving chlorite cements in shallow marine volcaniclastic sandstones: evidence from Cretaceous sandstones of the Sawan gas field, Pakistan. Am Assoc Pet Geol Bull 93:595–615

    Google Scholar 

  • Beicip Franlab (2017) Etude sur le role de la compartimentalisation sur la distribution des fluides des réservoirs du Trias, du Carbonifère et du Dévonien dans le bassin centre de Berkine. In: Sonatrach internal report

  • Bjorlykke K, Egeberg PK (1993) Quartz cementation in sedimentary basins. Am Assoc Pet Geol Bull 77:1536–1548

    Google Scholar 

  • Bloch JD, Lander RH, Bonell L (2002) Anomalously high porosity and permeability in deeply buried sandstones reservoirs: origin and predictability. Am Assoc Pet Geol Bull 86:301–328

    Google Scholar 

  • Boulvain F (eds) (2010) Géologie Générale du Minéral aux Géospheres Niveau A (Français), Technosup, Ellipses, 260 pages

  • Boulvain F (eds) (2011) Geologie de Terrain de l’Affleurement au Concept Geologie (Français), Technosup, Ellipses, 160 pages

  • Boulvain F (eds) (2013) Pétrologie sédimentaire: Des roches aux processus (Français), Technosup, ELLIPSES, 240 pages

  • Brand U, Morrison JO, Campbell IT (1998) Diagenesis. In: Geochemistry. Encyclopedia of Earth Science. Springer, Dordrecht

  • Burley SD, Kantorowicz JD, Waugh B (1985) Clastic diagenesis. In: Sedimentology: recent and applied aspects (Eds P. Brenchley & B.P.B. Williams). Spec. Publ. Geol. Soc. London, No. 18. Blackwell Scientific Publications, Oxford, pp 189–226

    Google Scholar 

  • Cailleux A, Tricart J (1963) Initiation à l’étude des sables et des galets. Centre de Documentation Universitaire, Paris, 56 tabl. 72 fig., index, 369 p

  • Carr ID (2002) Second-order sequence stratigraphy of the palaeozoic of North Africa. J Pet Geol 25(3):259–280

  • Compton R (ed) (1985) Geology in the field. Wiley 416 pages

  • Curtis CD (1977) Sedimentary geochemistry: environments and processes dominated by involvement of an aqueous phase. Philos Trans R Soc Lond 286:353–372

    Article  Google Scholar 

  • Curtis CD (1983) Geochemistry of porosity enhancement and reduction on clastic sediments. In: Petroleum geochemistry and exploration of Europe (Ed. J. Brooks). Spec. Publ. Geol. Soc. London, No. 12. Blackwell Scientific Publications, Oxford, pp 113–125

    Google Scholar 

  • Dong S, Zeng L, Xu C, Dowd P, Gao Z, Mao Z, Wang A (2019) A novel method for extracting information on pores from cast thin-section images. J Comput Geosci 130:69–83

    Article  Google Scholar 

  • Durand C, Brosse E, Cerepi A (2001) Effect of pore-lining chlorite on petrophysical properties of low-resistivity sandstone reservoirs. SPE Reserv Eval Eng 4:231–239

    Article  Google Scholar 

  • Echikh K (1998) Geology and hydrocarbon occurrences in the Ghadames Basin, Algeria,Tunisia, Libya. In: MacGregor DS, Moody RTJ, Clark-Lowes DD (eds) Petroleum geology of North Africa

    Google Scholar 

  • Ehrenberg SN (1993) Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: examples from the Norwegian continental shelf. Am Assoc Pet Geol Bull 77:1260–1286

    Google Scholar 

  • Elmore RD, Engel MH, Crawford L, Nick K, Imbus S, Sofer Z (1987) Evidence for a relationship between hydrocarbon migration and authigenic magnetite. Nature 325:428–430

    Article  Google Scholar 

  • Fabre J (2005) Géologie du Sahara occidental et central. Tervuren African geoscience collection 108: pp 572

  • Folk, R.L. (1968), and 1980 Petrology of sedimentary rocks. Austin, Hemphill Publishing Co., 182 p

  • Fowler AC, Yang XS (2003) Dissolution/precipitation mechanisms for diagenesis in sedimentary basins. J Geophys Res 108(B10):2269

    Article  Google Scholar 

  • Galeazzi S, Point O, Haddadi N, Mather J, Druesne D (2010) Regional geology and petroleum systems of the illizi-Berkine Area of the Algerian Saharan Platform. Mar Petroleum Geol 27(1)

  • Gary N (2013) Sedimentology and stratigraphy (English edition), 2nd edn. Wiley-Blackwell 432 pages

  • Garzanti E (2018) Petrographic classification of sand and sandstone. J Earth Sci Rev 192:545–563

    Article  Google Scholar 

  • Giles MR., Indrelid SL, Beynon GV, Amthor J (Eds.) (2000) The origins of large-scale quartz cementation: evidence from large data sets and coupled heat fluid mass transport modelling. In: Worden RH, Morad S. Quartz cementation in sandstones. International Association of Sedimentologists Special Publication 29. Blackwell Science, pp. 21–38

  • Girard M-C, Schvartz C, Jabiol B (eds) (2011) Étude des sols. Description, cartographie, utilisation, Dunod, 432 pages

  • Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of Northern and Central Africa: An overview. J Afr Eerth Sci 43(1-3):83–143

  • Hanrion C (eds) (1976) techniques utilisées pour la préparation des lames minces pétrographiques, office de la recherche scientifique et technique outre – mer (ORSTOM), 45p

  • Hardie LA (1967) The gypsum-anhydrite equilibrium at one atmosphere pressure. Am Mineral 52:171–200

    Google Scholar 

  • Hillier S (1994) Pore-lining chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM and XRD data, and implications for their origin. Clay Miner 29:665–680

    Article  Google Scholar 

  • Hillier S (2003) Quantitative analysis of clay and other minerals in sandstones by X-ray powder diffraction (XRPD). In: Worden RH, Morad S (eds) Clay mineral cements in sandstones. Special Publication of the International Association of Sedimentologists. Blackwells, Oxford, pp 213–252

    Google Scholar 

  • Jernot JP (1985) Analyse morphologique des milieux poreux. In Annales de chimie, vol 10, No. 4. Lavoisier, pp 319–330

  • Jowett EG, Cathles LM, Davis BW (1993) Predicting the depths of gypsum dehydration in evaporitic sedimentary basins. Am Assoc Pet Geol Bull 77:402–413

    Google Scholar 

  • Khan Z, Ahmad AHM, Sachan HK, Quasim MA (2018) The effects of diagenesis on the reservoir characters in ridge sandstone of Jurassic Jumara dome, Kachchh, Western India. J Geol Soc India 92:145–156

    Article  Google Scholar 

  • Khoury HN (2019) Review of clays and clay minerals in Jordan. Arab J Geosci 12:706

    Article  Google Scholar 

  • Larsen G, Chilingar GV (eds) (1979) Diagenesis in sediments and sedimentary rocks Developments in Sedimentology Amsterdam: Elsevier 579pp

  • Luo JL, Morad S, Salem A, Ketzer JM, Yan S, Zhang XL, Xue JM, Hlal O (2009) Impact of diagenesis on reservoir-quality evolution in fluvial and lacustrine-deltaic and Triassic sandstones from the Ordos Basin, China. J Petroleum Geol 32(1):79–102

    Article  Google Scholar 

  • Mcllreath IA, Morrow DW (eds) (1990) Diagenesis. Reprint Series 4. Geoscience Canada. Geological Association of Canada, 338pp

  • Moore DM, Reynolds Jr. RC (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, 378 pp

    Google Scholar 

  • Morad S, Ketzer JM, De Ros LF (2000) Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology 47:95–120

    Article  Google Scholar 

  • Moraes MAS, De Ros LF (eds) (1992) Depositional, infiltrated and authigenic clays in fluvial sandstones of the Jurassic Sergi Formation, Reconcavo Basin, northeastern Brazil. In: Houseknecht DW, Pittman ED. Origin, diagenesis, and petrophysics of clay minerals in sandstones. Society of Economic Paleontologists and Mineralogists Special Publications, 47, 197–208

  • Neville Ehrenberg S, Baek H (2019) Deposition, diagenesis and reservoir quality of an Oligocene reefal-margin limestone succession: Asmari Formation, United Arab Emirates, Sedimentary Geology Volumes 393–3941 December 2019, Article 105535

  • Odin GS (1990) Clay mineral formation at the continent–ocean boundary: the verdine facies. Clay Miner 25:477–483

    Article  Google Scholar 

  • Pettijohn FJ (eds) (1965) Geology of sand and sandstone, Printed by Indiana University Print. Plant, 180 pages

  • Pettijohn FJ (1987) Sand and sandstone, 2nd edn. Springer 553 pages

  • Pettijohn FJ (2005) Sedimentary rocks, 3rd edn. CbS publishers and distributors Pvt Ltd 220 pages

  • Pittman ED, Lumsden DN (1968) Relationships between chlorite coatings on quartz grains and porosity: Spiro Sand, Oklahoma. J Sediment Petrol 38:668–670

    Article  Google Scholar 

  • Remy RR (1994) Porosity reduction and major controls on diagenesis of Cretaceous–Paleocene volcaniclastic and arkosic sandstone, Middle Park Basin, Colorado. J Sediment Res A64:797–806

    Google Scholar 

  • Roubault M, De la Roche H, Alain G, Marchal P. (1961) Une méthode simple d'étude de la porosité des roches cristallines. In : Revue Géographique de l'Est, tome 1, n°3. pp 223–233

  • Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (Technical Report). Pure & Appl Chem 66:1739–1758

  • Shaobin G, Wenjing M (2020) Division of diagenesis and pore evolution of a Permian Shanxi shale in the Ordos Basin, China. J Petroleum Sci Eng 182(November 2019):106351

    Google Scholar 

  • Sterling JC, Ehrlich R, Prince C (1984) Evaluation of strategies for segmentation of blue-dyed pores in thin sections of reservoir rocks. J Comput Vision Graph Image Process 28(1):1–18

    Article  Google Scholar 

  • Surdam RC, Boese SW, Crossey LJ (1984) The chemistry of secondary porosity. Clastic Diagenesis (Ed. R.C. Surdam). Am Assoc Petroleum Geol Memoir 37:127–150

    Google Scholar 

  • Turner P, Pilling D, Walker D, Exton J, Binnie J, Sabaou N (2001) Sequence stratigraphy and sedimentology of the late triassic TAG-I (Blocks 401/402, Berkine Basin, Algeria). Mar Pet Geol 18:959–981

    Article  Google Scholar 

  • W.E.C (2007) Schlumberger well evaluation conference, Edité par Schlumberger Produit par AJ TORRE & Associates, Inc., Houston, TX, États-Unis

  • Wei W, Zhu X, Azmy K, Zhu S, He M, Sun S (2020) Depositional and compositional controls on diagenesis of the mixed siliciclastic-volcaniclastic sandstones: a case study of the Lower Cretaceous in Erennaoer Sag, Erlian Basin, NE China. J Petroleum Sci Eng 188:106855

    Article  Google Scholar 

  • Wilkinson M, Milliken KL, Haszeldine RS (2001) Systematic destruction of K-feldspar in deeply buried rift and passive margin sandstones. J Geol Soc Lond 158:675–683

    Article  Google Scholar 

  • Wilson MD (1992) Inherited grain-rimming clays in sandstones from eolian and shelf environments: their origin and control on reservoir properties. In: Houseknecht DW, Pittman ED (eds) Origin, diagenesis, and petrophysics of clay minerals in sandstone. SEPM Spec Publ, vol 47, pp 209–225

    Chapter  Google Scholar 

  • Worden RH, Burley SD (2003) Sandstone diagenesis: from sand to stone. In: Burley SD, Worden RH (Eds.). Clastic Diagenesis: recent and ancient. International Association of Sedimentologists, vol. 4. Blackwells, Oxford, pp.3–44

  • Worden RH, Morad S (2003) Clay minerals in sandstones: controls on formation, distribution and evolution. International Association of Sedimentologists special publication. 34: p 489

  • Xiaoqi D, Meimei H, Shaonan Z (2013) The role of provenance in the diagenesis of siliciclastic reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin, China. Pet Sci 10:149–160

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the petroleum company Sonatrach for granting access to the wells’ data and the thin-section samples. They also thank the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sid Ahmed Ali Khoudja.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali Khoudja, S., Chellat, S., Hacini, M. et al. Petrography and authigenic chlorite in the Siegenian reservoir rocks, Berkine Basin, eastern Algerian Sahara. Arab J Geosci 13, 767 (2020). https://doi.org/10.1007/s12517-020-05759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05759-z

Keywords

Navigation