Skip to main content

Advertisement

Log in

Analysis of discontinuous reception (DRX) on energy efficiency and transmission delay with bursty packet data traffic

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

Discontinuous reception (DRX) is a way for user equipment (UE) to save energy. DRX forces a UE to turn off its transceivers for a DRX cycle when it does not have a packet to receive from a base station, called an eNB. However, if a packet arrives at an eNB when the UE is performing a DRX cycle, the transmission of the packet is delayed until the UE finishes the DRX cycle. Therefore, as the length of the DRX cycle increases, not only the amount of UE energy saved by the DRX but also the transmission delay of a packet increase. Different applications have different traffic arrival patterns and require different optimal balances between energy efficiency and transmission delay. Thus, understanding the tradeoff between these two performance metrics is important for achieving the optimal use of DRX in a wide range of use cases. In this paper, we mathematically analyze DRX to understand this tradeoff. We note that previous studies were limited in that their analysis models only partially reflect the DRX operation, and they make assumptions to simplify the analysis, which creates a gap between the analysis results and the actual performance of the DRX. To fill this gap, in this paper, we present an analysis model that fully reflects the DRX operation. To quantify the energy efficiency of the DRX, we also propose a new metric called a real power-saving (RPS) factor by considering all the states and state transitions in the DRX specification. In addition, we improve the accuracy of the analysis result for the average packet transmission delay by removing unrealistic assumptions. Through extensive simulation studies, we validate our analysis results. We also show that compared with the other analysis results, our analysis model improves the accuracy of the performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 3GPP, TR 25.913: Requirements for evolved utra and evolved utran (V9.0.0), 2009

  2. Jin S, Han K, Choi S (2010) Idle mode for deep power save in ieee 802.11 wlans. Journal of Communications and Networks, vol 12

  3. Ayman E (2014) Extending the battery life of smartphones and tablets: a practical approach to optimizing the lte network. IEEE Veh Technol Mag 9(2):38–49

    Article  Google Scholar 

  4. P. J.D, U.s. wireless smartphone satisfaction studies, vol. 1, 2012

  5. 3GPP TS 36.321, Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (version 9.3.0 Release 9), 2010

  6. 3GPP TR 36.321, E-UTRA; Medium Access Control (MAC); Protocol Specification (Rel. 11), March 2013.

  7. 3GPP TR 36.331, E-UTRA; Radio Resource Control (RRC); Protocol Specification (Rel. 11), March 2013.

  8. Kwon SJ, Chung YW, Sung DK (2003) Queueing model of sleep-mode operation in cellular digital packet data. IEEE Trans Veh Technol 52(4):1158–1162

    Article  Google Scholar 

  9. Jin S, Qiao D (2012) Numerical analysis of the power saving in 3gpp lte advanced wireless networks. IEEE Trans Veh Technol 61(4):1779–1785

    Article  Google Scholar 

  10. Yang SR, Lin YB (2005) Modeling umts discontinuous reception mechanism. IEEE Trans Wirel Commun 4(1):312–319

    Article  Google Scholar 

  11. Tseng CC, Wang HC, Kuo FC, Ting KC, Chen HH, Chen GY (2016) Delay and power consumption in lte/lte-a drx mechanism with mixed short and long cycles. IEEE Trans Veh Technol 65(3):1721–1734

    Article  Google Scholar 

  12. Yang S-R, Yan S-Y, Hung H-N (2007) Modeling umts power saving with bursty packet data traffic. IEEE Trans Mob Comput 6(12):1398–1409

    Article  Google Scholar 

  13. Liu E, Ren W (2015) Performance analysis of a generalized and autonomous drx scheme. IEEE Trans Veh Technol 64(5):1–1

    Article  Google Scholar 

  14. Jha S, Koc A, Vannithamby R (2012) Optimization of discontinuous reception (drx) for mobile internet applications over lte, 09

  15. Paxson V, Floyd S (1995) Wide area traffic: the failure of poisson modeling. IEEE/ACM Transactions on networking 3(3):226–244

    Article  Google Scholar 

  16. ETSI (1998) Universal mobile telecommunications system (umts);selection procedures for the choice of radio transmission technologies of the umts, Technical Report UMTS 30.03, version 3.2.0

  17. Willinger W, Taqqu MS, Sherman R, Wilson DV (1997) Self-similarity through high-variability: statistical analysis of ethernet lan traffic at the source level. IEEE/ACM Trans Networking 5(1):71–86

    Article  Google Scholar 

  18. Philip NR, Malarkodi B, Gopi E (2018) Simulation analysis of discontinuous reception mechanism with etsi traffic model in lte networks. In: 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), IEEE, pp 1–5

  19. Stea G, Virdis A (2014) A comprehensive simulation analysis of lte discontinuous reception (drx). Comput Netw 73(38):22–40

    Article  Google Scholar 

  20. Lauridsen M, Laselva D, Frederiksen F, Kaikkonen J (2019) 5g new radio user equipment power modeling and potential energy savings In: 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), IEEE, pp 1–6

  21. Moradi F, Fitzgerald E, Pioro M, Landfeldt B (2019) Flexible drx optimization for lte and 5g. IEEE Transactions on Vehicular Technology

  22. Sharma L, Kumar B, Wu S-L (2019) Performance analysis and adaptive drx scheme for dual connectivity.IEEE Internet of Things Journal, 08

  23. Lee CC, Yeh JH, Chen JC (2004) Impact of inactivity timer on energy consumption in wcdma and cdma2000. In: Wireless Telecommunications Symposium, pp 15–24

  24. Maheshwari MK, Agiwal M, Saxena N, Roy A (2018) Directional discontinuous reception (ddrx) for mmwave enabled 5g communications. IEEE Transactions on Mobile Computing

  25. Liu D, Wang C, Rasmussen LK (2019) Discontinuous reception for multiple-beam communication. IEEE Access 7:46931–46946

    Article  Google Scholar 

  26. Cai B, Chen Y, Darwazeh I (2019) Analyzing energy efficiency for iot devices with drx capability and poisson arrivals. In: 2019 26th International Conference on Telecommunications (ICT). IEEE, pp 254–259

  27. Sultania AK, Zand P, Blondia C, Famaey J (2018) Energy modeling and evaluation of nb-iot with psm and edrx. In: 2018 IEEE Globecom Workshops (GC Wkshps). IEEE, pp 1–7

  28. Bello H, Jian X, Wei Y, Chen M (2018) Energy-delay evaluation and optimization for nb-iot psm with periodic uplink reporting. IEEE Access 7:3074–3081

    Article  Google Scholar 

  29. Huang J, Qian F, Gerber A, Mao ZM, Sen S, Spatscheck O (2012) A close examination of performance and power characteristics of 4g lte networks. In: International Conference on Mobile Systems, Applications, and Services, pp 225–238

  30. Wald A (1944) On cumulative sums of random variables. Ann Math Statist 15(1):283–296

    Article  MathSciNet  Google Scholar 

  31. Ross SM (1996) Stochastic Processes. John Wiley & Sons

Download references

Funding

This work was supported by the Research Resettlement Fund for the new faculty of Kwangwoon University in 2019 and by the National Research Foundation of Korea (NRF) funded by the Korea government under Grant NRF-2018R1D1A1B07050893.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaesung Park.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Proof of lemma 1

If we denote by φi(i ≥ 0) the probability that the inactivity timer restarts i times until it exceeds CT or a new packet arrives, the average duration of an active state (in one RC) is obtained as

$$ E[T_{a}] = E[\tilde{t}_{B}] + \sum\limits_{i=0}^{\infty}i\varphi_{i}(E[\hat{t}_{I}]+E[t_{B}])+C_{T}, $$
(27)

Since the inactivity timer restarts if a packet arrives before it becomes greater than CT, the probability that a packet arrives within CT after an inactivity timer starts becomes 1 − Pr{ν(CT) = 0}. Therefore, φi is given as

$$ \begin{array}{@{}rcl@{}} \varphi_{i} & = & (1-Pr\{\nu(C_{T})=0\})^{i} \times Pr\{\nu(C_{T})=0\} \\ &=& (1-p_{B}e^{-\lambda_{ipc}C_{T}}-p_{C}e^{-\lambda_{is}C_{T}})^{i} \\ && \times (p_{B}e^{-\lambda_{ipc}C_{T}}+p_{C}e^{-\lambda_{is}C_{T}}). \end{array} $$
(28)

Combining Eq. 28 with 27, we obtain

$$ \begin{array}{@{}rcl@{}} E[T_{a}] &=& E[\tilde{t}_{B}]+(E[\hat{t}_{I}]+E[t_{B}])\cdot (\frac{1}{Pr\{\nu(C_{T})=0\}}-1)+C_{T}. \end{array} $$
(29)

The first inactivity period (\(\hat {t}_{I}\)) ends when a packet arrives within CT. Since both tis and tipc follow an exponential distribution, we can obtain the probability density function (pdf) of \(\hat {t}_{I} \) as

$$ f_{\hat{t}_{I}}(t) = \left\{ \begin{array}{ll} \frac{p_{B}\lambda_{ipc}e^{-\lambda_{ipc}t}+p_{C}\lambda_{is}e^{-\lambda_{is}t}}{1-Pr\{\nu(C_{T})=0\}}, & 0 \leq t \leq C_{T}\\ 0. & C_{T}<t \end{array} \right. $$
(30)

Therefore, we can derive

$$ \begin{array}{@{}rcl@{}} E[\hat{t}_{I}]&=&{\int}_{0}^{\infty} t f_{\hat{t}_{I}}(t) \mathrm{d} t \\ &=& \frac{1}{1-Pr\{\nu(C_{T})=0\}}\times {\int}_{0}^{C_{T}} (p_{B}\lambda_{ipc}te^{-\lambda_{ipc}t}+p_{C}\lambda_{is}te^{-\lambda_{is}t}) \mathrm{d} t \\ &=&\frac{ p_{B}[1-(C_{T}\lambda_{ipc}+1)e^{-C_{T}\lambda_{ipc}}]}{\lambda_{ipc}(1-Pr\{\nu(C_{T})=0\})} +\frac{ p_{C}[1-(C_{T}\lambda_{is}+1)e^{-C_{T}\lambda_{is}}] }{\lambda_{is}(1-Pr\{\nu(C_{T})=0\})}. \end{array} $$
(31)

Since an activity period is identical to the duration of a packet call delivery, tB consists of Np packet service times. From Wald’s theorem [30], we have

$$ E[t_{B}]=E[N_{p}]E[t_{x}]=\frac{\mu_{p}}{\lambda_{x}}. $$
(32)

Since \(\tilde {t}_{B}\) is the first activity period in an RC, it is followed by one of the DRX states. Thus, \(\tilde {t}_{B}\) also contains Np packet service times. Thus, we can also obtain

$$ E[\tilde{t}_{B}]=E[N_{p}]E[t_{x}]=\frac{\mu_{p}}{\lambda_{x}}. $$
(33)

Combining Eqs. 3 and 3133 into Eq. 29, we can obtain

$$ \begin{array}{@{}rcl@{}} E[T_{a}]&=&\frac{(\mu_{pc}-1)[1-(\lambda_{ipc}C_{T}+1)e^{-\lambda_{ipc}C_{T}}]}{\lambda_{ipc}[e^{-\lambda_{ipc}C_{T}}(\mu_{pc}-1)+e^{-\lambda_{is}C_{T}}]} \\ && +\frac{1-(\lambda_{is}C_{T}+1)e^{-\lambda_{is}C_{T}}}{\lambda_{is}[e^{-\lambda_{ipc}C_{T}}(\mu_{pc}-1)+e^{-\lambda_{is}C_{T}}]} \\ && +\frac{\mu_{pc}{\mu^{2}_{p}}}{\lambda_{x}[e^{-\lambda_{ipc}C_{T}}(\mu_{pc}-1)+e^{-\lambda_{is}C_{T}}]}+C_{T}. \end{array} $$
(34)

1.2 A.2 Proof of lemma 2

Since tΛ follows the truncated exponential distribution, fΛ(t) is given as

$$ f_{\Lambda}(t) = \left\{ \begin{array}{ll} (\frac{1}{1-e^{-\lambda_{ipc}C_{S}}})\lambda_{ipc}e^{-\lambda_{ipc}t}, & 0 \leq t \leq C_{S}\\ 0. & otherwise \end{array} \right. $$
(35)

Since 𝜃k is the probability that subcase k occurs for a given tΛ, it can be obtained as follows. It is clear that

$$ \theta_{1}=\frac{1}{\mu_{p}}. $$
(36)

We denote by TD the time interval between the first packet arrival time of a packet call and the last packet arrival time of the packet call. Then, we can obtain \(\theta _{2}=(1-\frac {1}{\mu _{p}})Pr[T_{D}>C_{S}-t_{\Lambda }].\) According to [12], TD follows the Erlang-Np distribution with rate λip; then, 𝜃2 can be derived as

$$ \theta_{2}=(1-\frac{1}{\mu_{p}})e^{-\frac{\lambda_{ip}}{\mu_{p}}(C_{S}-t_{\Lambda})}. $$
(37)

From Eqs. 36 and 37, we can obtain

$$ \theta_{3}=1-\theta_{1}-\theta_{2}=(1-\frac{1}{\mu_{p}})\left[1-e^{-\frac{\lambda_{ip}}{\mu_{p}}(C_{S}-t_{\Lambda})}\right]. $$
(38)

In subcase 1, only one packet arrived at tΛ when a UE was in a short DRX state. Therefore, in this case (i.e., subcase 1, k = 1), we obtain

$$ \begin{array}{@{}rcl@{}} E[N^{\prime}_{1,1|k=1}]=1, E[N^{\prime\prime}_{1,1|k=1}]=0, \\ E[W^{\prime}_{1,1|k=1}]=C_{S}-t_{\Lambda}, \ E[W^{\prime\prime}_{1,1|k=1}]=0. \end{array} $$
(39)

For subcase 2, we follow similar procedures taken in [12] and obtain

$$ \begin{array}{@{}rcl@{}} E[N^{\prime}_{1,1|k=2}]&=&1+\lambda_{ip}(1-\frac{1}{\mu_{p}})(C_{S}-t_{\Lambda}), \\ E[N^{\prime\prime}_{1,1|k=2}]&=&\mu_{p}, \\ E[W^{\prime}_{1,1|k=2}]&=&(C_{S}-t_{\Lambda})+\frac{1}{2}(E[N^{\prime}_{1,1|k=2}]-1)(C_{S}-t_{\Lambda}) \\ && +(\frac{1}{2\lambda_{x}})(E[N^{\prime2}_{1,1|k=2}]-E[N^{\prime}_{1,1|k=2}]),\\ E[W^{\prime\prime}_{1,1|k=2}]&=&(\frac{1}{\lambda_{x}})E[N^{\prime\prime}_{1,1|k=2}]E[N^{\prime}_{1,1|k=2}]-(\frac{1}{\lambda_{ip}})E[N^{\prime\prime}_{1,1|k=2}]\\ &&+\frac{1}{2}(\frac{1}{\lambda_{x}}-\frac{1}{\lambda_{ip}})(E[N^{{{\prime\prime}}2}_{1,1|k=2}]-E[N^{\prime\prime}_{1,1|k=2}]), \end{array} $$
(40)

where \(E[N^{\prime 2}_{1,1|k=2}]\) and \(E[N^{{\prime \prime }2}_{1,1|k=2}]\) are given as follows:

$$ \begin{array}{@{}rcl@{}} E[N^{\prime2}_{1,1|k=2}]&=&\lambda_{ip}(1-\frac{1}{\mu_{p}})(C_{S}-t_{\Lambda})+(E[N^{\prime}_{1,1|k=2}])^{2}, \\ E[N^{{\prime\prime}2}_{1,1|k=2}]&=&2{\mu_{p}^{2}}-\mu_{p}. \end{array} $$

In subcase 3, all the packets of a packet call arrive when a UE is in the short DRX state. Therefore, we obtain

$$ E[N^{\prime\prime}_{1,1|k=3}]=0, E[W^{\prime\prime}_{1,1|k=3}]=0. $$
(41)

Given tΛ, according to the decomposition property of Poisson processes [31], (tΥtΛ) follows the exponential distribution with rate \(\frac {\lambda _{ip}}{\mu _{p}}\). Therefore, we can obtain the conditional probability density function of tΥ as

$$ f_{\Upsilon|{\Lambda}}(t_{\Upsilon}|t_{\Lambda})=\left[\frac{1}{1-e^{-\frac{\lambda_{ip}}{\mu_{p}}(C_{S}-t_{\Lambda})}}\right](\frac{\lambda_{ip}}{\mu_{p}})e^{-\frac{\lambda_{ip}}{\mu_{p}}(t_{\Upsilon}-t_{\Lambda})}, $$
(42)

where tΛtΥCS. According to Eq. 42, we derive E[tΥ|tΛ] and \(E[t^{2}_{\Upsilon }|t_{\Lambda }]\) as

$$ \begin{array}{@{}rcl@{}} E[t_{\Upsilon}|t_{\Lambda}]&=&t_{\Lambda}+\left[ \frac{1}{1-e^{-\frac{\lambda_{ip}}{\mu_{p}}(C_{S}-t_{\Lambda})}}\right] \left[\frac{\mu_{p}}{\lambda_{ip}}-(C_{S}-t_{\Lambda}+\frac{\mu_{p}}{\lambda_{ip}})e^{-\frac{\lambda_{ip}}{\mu_{p}}(C_{S}-t_{\Lambda})} \right], \\ E[t^{2}_{\Upsilon}|t_{\Lambda}]&=&t^{2}_{\Lambda}+ \left[ \frac{1}{1-e^{-\frac{\lambda_{ip}}{\mu_{p}}(C_{S}-t_{\Lambda})}}\right]\left\{2t_{\Lambda}(\frac{\mu_{p}}{\lambda_{ip}})\right.+2(\frac{\mu_{p}}{\lambda_{ip}})^{2}-[2t_{\Lambda}(C_{S}-t_{\Lambda} \\ &&+\frac{\mu_{p}}{\lambda_{ip}}) +2(\frac{\mu_{p}}{\lambda_{ip}})^{2}+2(\frac{\mu_{p}}{\lambda_{ip}})(C_{S}-t_{\Lambda})+\left. \left.(C_{S}-t_{\Lambda})^{2} \right]e^{-\frac{\lambda_{ip}}{\mu_{p}}(C_{S}-t_{\Lambda})}\right\}.\\ \end{array} $$
(43)

Following a similar procedure to obtain \(E[N^{\prime }_{1,1|2}]\), we obtain

$$ E[N^{\prime}_{1,1|k=3}]=2+\lambda_{ip}(1-\frac{1}{\mu_{p}})(E[t_{\Upsilon}|t_{\Lambda}]-t_{\Lambda}). $$
(44)

According to the decomposition property of the Poisson processes [31], for a given tΥ, the number of packet arrivals in this period follows a shifted Poisson distribution. However, if tΥ is a random variable, then the number of packet arrivals in this period is not merely a shifted Poisson distribution. Therefore, in contrast to [12], we do not make any assumptions to obtain the variance of \(N^{\prime }_{1,1|k=3}\). Then, we can derive \(E[N^{\prime 2}_{1,1|k=3}]\) as follows.

$$ \begin{array}{@{}rcl@{}} E[N^{\prime2}_{1,1|k=3}] & = & Var[N^{\prime}_{1,1|k=3}]+(E[N^{\prime}_{1,1|k=3}])^{2} \\ & = & Var[N^{\prime}_{1,1|k=3}-2]+(E[N^{\prime}_{1,1|k=3}])^{2} \\ &=& \sum\limits_{t_{\Upsilon}=t_{\Lambda}}^{C_{S}}\sum\limits_{k=0}^{\infty}k^{2}f_{\Upsilon|{\Lambda}}(t_{\Upsilon})\frac{[\lambda_{ip}(1-\frac{1}{\mu_{p}})(t_{\Upsilon}-t_{\Lambda})]^{k} }{k!} \\ &&\cdot e^{-\lambda_{ip}(1-\frac{1}{\mu_{p}})(t_{\Upsilon}-t_{\Lambda})}+4E[N^{\prime}_{1,3|k=3}]-4 \\ &=& [\lambda_{ip}(1-\frac{1}{\mu_{p}})]^{2}E[t_{\Upsilon}^{2}|t_{\Lambda}]+\{5\lambda_{ip}(1-\frac{1}{\mu_{p}}) \\ &&-2[\lambda_{ip}(1-\frac{1}{\mu_{p}})]^{2}t_{\Lambda}\}E[t_{\Upsilon}|t_{\Lambda}] \\ &&+[\lambda_{ip}(1-\frac{1}{\mu_{p}})]^{2}t_{\Lambda}^{2}-5\lambda_{ip}(1-\frac{1}{\mu_{p}})t_{\Lambda}+4. \end{array} $$
(45)

Therefore, we can obtain the average waiting time of \(N^{\prime }_{1,1|k=3}\) as

$$ \begin{array}{@{}rcl@{}} E[W^{\prime}_{1,1|k=3}]&=&E[N^{\prime}_{1,1|k=3}]\left[C_{S}-\frac{1}{2}(E[t_{\Upsilon}|t_{\Lambda}]+t_{\Lambda})\right] +E\left[{\sum}_{k=1}^{N^{\prime}_{1,1|k=3}}(k-1)\frac{1}{\lambda_{x}} \right] \\ &=&E[N^{\prime}_{1,1|k=3}]\left[C_{S}-\frac{1}{2}(E[t_{\Upsilon}|t_{\Lambda}]+t_{\Lambda})\right] +(\frac{1}{2\lambda_{x}})(E[N^{\prime2}_{1,1|k=3}]-E[N^{\prime}_{1,1|k=3}]).\\ \end{array} $$
(46)

Combining Eqs. 35414446, we obtain

$$ \begin{array}{@{}rcl@{}} E[N_{1,1}]&=&{\int}_{t=0}^{C_{S}}\left\{\sum\limits_{k=1}^{3}\theta_{k}(E[N^{\prime}_{1,1|k}]+E[N^{\prime\prime}_{1,1|k}])\right\}f_{\Lambda}(t)\mathrm{d} t, \\ E[W_{1,1}]&=&{\int}_{t=0}^{C_{S}} \left\{\sum\limits_{k=1}^{3} \theta_{k} (E[W^{\prime}_{1,1|k}]+E[W^{\prime\prime}_{1,1|k}])\right\}f_{\Lambda}(t) \mathrm{d} t. \end{array} $$
(47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Park, J. Analysis of discontinuous reception (DRX) on energy efficiency and transmission delay with bursty packet data traffic. Ann. Telecommun. 76, 429–446 (2021). https://doi.org/10.1007/s12243-020-00763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-020-00763-6

Keywords

Navigation