Skip to main content

Advertisement

Log in

Review of state-of-the-art battery state estimation technologies for battery management systems of stationary energy storage systems

  • Review article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Lithium-ion batteries have recently been in the spotlight as the main energy source for the energy storage devices used in the renewable energy industry. The main issues in the use of lithium-ion batteries are satisfaction with the design life and safe operation. Therefore, battery management has been required in practice. In accordance with this demand, battery state indicators such as the state-of-charge (SOC), state-of-health (SOH), state-of-function (SOF), and state-of-temperature (SOT) have been widely applied. The use of these indicators ensures safe operation without overcharging and over-discharging. In addition, it can also help satisfy the design life. This paper presents a literature review of battery state indicators over the last three years and proposes the requirement of state-of-the-art battery state indicators. It also suggests future developments for battery management system (BMS) in stationary energy storage systems (ESSs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change: Climate Change 2014: mitigation of climate change: working group III contribution to the IPCC fifth assessment report. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  2. Hao, H., Liu, Z., Zhao, F., Geng, Y., Sarkis, J.: Material flow analysis of lithium in China. Resour. Policy 51, 100–106 (2017)

    Google Scholar 

  3. Datta, U., Kalam, A., Shi, J.: Battery energy storage system control for mitigating PV penetration impact on primary frequency control and state-of-charge recovery. IEEE Trans. Sustain. Energy 11, 746–757 (2019)

    Google Scholar 

  4. Barre, A., Deguilhem, B.: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 241, 680–689 (2013)

    Google Scholar 

  5. Belmonte, N., Luetoo, C., Staulo, S., Rizzi, P., Baricco, M.: Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Application. Challenges 8(1), 9 (2017)

    Google Scholar 

  6. BENF, Energy Storage Outlook 2019 (2019)

  7. Hong, J.H., Kim, J.T., Son, W.I.: Long-term energy strategy scenarios for south Korea: transition to a sustainable energy system. Energy Policy 127, 425–437 (2019)

    Google Scholar 

  8. Kim, J.H.: ESS Fire accident and investigate cause, Publishing Ministry of Trade, Industry and Energy. https://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_cd_n=81&bbs_seq_n=161771 (2019). Accessed June 2019

  9. Li, Z., Huang, J., Liwa, B., Zhang, J.: On state-of-charge determination for lithium-ion batteries. J. Power Sources 348, 281–301 (2017)

    Google Scholar 

  10. Xiong, R., Li, L., Tian, J.: Towards a smarter battery management system: a critical review on battery state of health monitoring methods. J. Power Sources 405, 18–29 (2018)

    Google Scholar 

  11. Du, J., Liu, Z., Wang, Y., Wen, C.: An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicles. Control Eng. Pract. 54, 81–90 (2016)

    Google Scholar 

  12. Hossain Lipu, M.S., Hannan, M.A., Hussain, A., Hoque, M.M.: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: challenges and recommendations. J. Clean. Prod. 205, 115–133 (2018)

    Google Scholar 

  13. Perez, H.E., Hu, X., Dey, S., Moura, S.J.: Optimal charging of li-ion batteries with coupled electro-thermal-aging dynamics. IEEE Trans. Veh. Technol. 66(9), 7761–7770 (2017)

    Google Scholar 

  14. Beelen, H.P.G.J., Raijmakers, L.H.J., Donkers, M.C.F., Notten, P.H.L., Bergveld, H.J.: A comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries. Appl. Energy 175, 128–140 (2016)

    Google Scholar 

  15. Xia, G., Cao, L., Bi, G.: A review on battery thermal management in electric vehicle application. J. Power Sources 367, 90–105 (2017)

    Google Scholar 

  16. Gao, Y., Jiang, J., Zhang, C., Zhaing, W., Ma, Z., Jiang, Y.: Lithium-ion battery aging mechanisms and life model under different charging stresses. J. Power Sources 365, 103–114 (2017)

    Google Scholar 

  17. Klett, M., Eriksson, R., Groot, J., Svens, P., Hogstrom, K.C., Lindstrom, R.W., Berg, H., Gustafson, T., Lindberg, G., Edstrom, K.: Non-uniform aging of cycled commercial LiFePO4//graphite cylindrical cells revealed by post-mortem analysis. J. Power Sources 257, 126–137 (2014)

    Google Scholar 

  18. Feng, X., Sun, J., Ouyang, M., He, X., Lu, L., Han, X., Fang, M., Peng, H.: Characterization of large format lithium ion battery exposed to extremely high temperature. J. Power Sources 272, 457–467 (2014)

    Google Scholar 

  19. Petzl, M., Kasper, M., Danzer, M.A.: Lithium plaiting in commercial lithium-ion battery—a low temperature aging study. J. Power Sources 275, 799–807 (2015)

    Google Scholar 

  20. Momma, T., Matsunaga, M., Mukoyama, D., Osaka, T.: Ac impedance analysis of lithium ion battery under temperature control. J. Power Sources 216, 304–307 (2012)

    Google Scholar 

  21. Anton, J.C.A., Nieto, P.J.G., Juez, F.J.C., Lasheras, F.S., Vega, M.G., Gutierrez, M.N.R.: Battery state-of-charge estimator using the SVM technique. Appl. Math. Model. 37, 6244–6253 (2013)

    Google Scholar 

  22. Meng, J., Ricco, M., Luo, G., Swierczynski, M.: An overview and comparison of online implementable SOC estimation methods for lithium-ion battery. IEEE Trans. Ind. Appl. 54(2), 1583–1591 (2018)

    Google Scholar 

  23. Chaoui, H.: Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries. IEEE Trans. Ind. Electron 62(3), 1010–1018 (2015)

    Google Scholar 

  24. Kim, J.H., Lee, S.J., Cho, B.H.: Complementary cooperation algorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction. IEEE Trans. Power Electron. 27(1), 436–451 (2012)

    Google Scholar 

  25. Pilatowicz, G., Marongiu, A., Drillkens, J., Sinhuber, P., Sauer, D.U.: A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as example. J. Power Sources 296, 365–376 (2015)

    Google Scholar 

  26. Han, X., Lu, L., Zheng, Y., Feng, X.: A review on the key issue of the lithium ion battery degradation among the whole life cycle. eTransportation 1, 100005 (2010)

    Google Scholar 

  27. Li, Y., Liu, K., Aoife, M.F., Zulke, A.: Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review. Renew. Sustain. Energy Rev. 113, 109254 (2019)

    Google Scholar 

  28. Lu, L., Han, X., Li, J., Hua, J., Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)

    Google Scholar 

  29. Meissner, E., Richter, G.: Battery monitoring and electrical energy management precondition for future vehicles electric power systems. J. Power Sources 116, 79–98 (2003)

    Google Scholar 

  30. Plett, G.L.: Battery management systems, Volume II: Equivalent-circuit methods, 1st edn. Artech House, Norwood (2015)

    Google Scholar 

  31. Fleischer, C., Waag, W., Heyn, H., Sauer, D.: On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit. J. Power Sources 262, 457–482 (2014)

    Google Scholar 

  32. Wang, D., Yang, F., Gan, L., Li, Y.: Fuzzy prediction of power lithium ion battery state of function based on the fuzzy c-means clustering algorithm. World Electr. Veh. J. 10(1), 1 (2019)

    Google Scholar 

  33. Abada, S., Marlair, G., Lecocq, A., Petit, M., Sauvant-Moynot, V., Huet, F.: Safety focused modeling of lithium-ion batteries: a review. J. Power Sources 306, 178–192 (2016)

    Google Scholar 

  34. Kang, D.H., Lee, P.Y., Yoo, K.S., Kim, J.H.: Internal thermal network model-based inner temperature distribution of high-power lithium-ion battery packs with different shapes for thermal management. J. Energy Storage 27, 101017 (2020)

    Google Scholar 

  35. Yoo, K.S., Kim, J.H.: Thermal behavior of full-scale battery pack based on comprehensive heat-generation model. J. Power Sources 433, 226715 (2019)

    Google Scholar 

  36. Liao, Z., Zhang, S., Li, K., Zhang, G., Habetler, T.G.: A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. J. Power Sources 436, 226879 (2019)

    Google Scholar 

  37. Bernardi, D., Powlikowski, E., Newman, J.: A general energy balance for battery systems. J. Electrochem. Soc. 132, 5–12 (1985)

    Google Scholar 

  38. Xie, Y., Shi, S., Tang, J., Wu, H., Yu, J.: Experimental and analytical study on heat generation characteristics of a lithium-ion power battery. Int. J. Heat Mass Transf. 122, 884–894 (2018)

    Google Scholar 

  39. Wang, Q., Jiang, B., Li, B., Yan, Y.: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sustain. Energy Rev. 64, 106–128 (2016)

    Google Scholar 

  40. Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., He, X.: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018)

    Google Scholar 

  41. Arora, S.: Selection of thermal management system for modular battery packs of electric vehicles: a review of existing and emerging technologies. J. Power Sources 400, 621–640 (2018)

    Google Scholar 

  42. Sun, J., Wei, G., Pei, L., Lu, R., Song, K., Wu, C., Zhu, C.: Online internal temperature estimation for lithium-ion batteries based on Kalman filter. Energies 8, 4400–4415 (2015)

    Google Scholar 

  43. Cuma, M.U., Koroglu, T.: A comprehensive review on estimation strategies used in hybrid and battery electric vehicles. Renew. Sustain. Energy Rev. 42, 517–531 (2015)

    Google Scholar 

  44. Lee, S.J., Kim, J.H., Lee, J.M., Cho, B.H.: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge. J. Power Sources 185, 1367–1373 (2008)

    Google Scholar 

  45. Kao, C., Chen, C., Tso, T.: Method of predicting remaining capacity and run-time of a battery device, US Patent 20110234167 (2011)

  46. Seaman, A., Dao, T., McPhee, J.: A survey of mathematics-based equivalent-circuit and electro-chemical battery models for hybrid and electric vehicles simulation. J. Power Sources 256, 410–423 (2014)

    Google Scholar 

  47. Khan, K., Jafari, M., Gauchia, L.: Comparison of Li-ion battery equivalent circuit modelling using impedance analyzer and Bayesian network. IET Electr. Syst. Transp. 8(3), 197–204 (2018)

    Google Scholar 

  48. Cho, S.W., Jeong, H.S., Han, C.H., Jin, S.S., Lim, J.H., Oh, J.K.: State-of-charge estimation for lithium-ion batteries under various operating conditions using and equivalent circuit model. Comput. Chem. Eng. 41, 1–9 (2012)

    Google Scholar 

  49. Hu, X., Li, S., Peng, H.: A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 198, 359–367 (2012)

    Google Scholar 

  50. He, H., Xiong, R., Guo, H., Li, S.: Comparison study on the battery models used for the energy management of batteries in electric vehicles. Energy Convers. Manag. 64, 113–121 (2012)

    Google Scholar 

  51. Hannan, M.A., Lipu, M.S.H., Hussain, A., Mohamed, A.: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sustain. Energy Rev. 78, 834–854 (2017)

    Google Scholar 

  52. Pattipati, B., Sankavaram, C., Pattipati, K.: System identification and estimation framework for pivotal automotive battery management system characteristics. IEEE Trans. Syst. Man Cybern. Part C 41, 869–884 (2011)

    Google Scholar 

  53. Wu, J., Zhang, C., Chen, Z.: An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural network. Appl. Energy 173, 134–140 (2016)

    Google Scholar 

  54. Wu, J., Wang, Y., Zhang, X., Chen, Z.: A novel state of health estimation method of Li-ion battery using group method of data handling. J. Power Sources 327, 457–464 (2016)

    Google Scholar 

  55. Chen, J., Ouyang, Q., Xu, C., Su, H.: Neural network-based sate of charge observer design for Lithium-Ion batteries. IEEE Trans. Control Syst. Technol. 26, 313–320 (2017)

    Google Scholar 

  56. Ma, Y., Duan, P., Sun, Y., Chen, H.: Equalization of lithium-ion battery pack based on fuzzy logic control in electric vehicle. IEEE Trans. Ind. Electron. 65, 6762–6771 (2018)

    Google Scholar 

  57. Sheng, H., Xiao, J.: Electric vehicle state of charge estimation: nonlinear correlation and fuzzy support vector machine. J. Power Sources 281, 131–137 (2015)

    Google Scholar 

  58. Alvarez Anton, J.C., Garacia Nieto, P.J., Blanco Viejo, C., Vilan, J.A.: Support vector machines used to estimate the battery sate of charge. IEEE Trans. Power Electron. 28, 5919–5926 (2013)

    Google Scholar 

  59. Zhang, S., Yang, L., Zhao, X., Qiang, J.: A GA optimization for lithium-ion battery equalization based on SOC estimation by NN and FLC. Electr. Power Energy Syst. 73, 318–328 (2015)

    Google Scholar 

  60. Moura, S. J., Chaturvedi, N.A., Krstic, M.: PDE estimation techniques for advanced battery management systems—Part I: SOC estimation. In: 2012 American Control Conference (2012)

  61. Shrivastava, P., Soon, T.K., Idris, M.: Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renew. Sustain. Energy Rev. 113, 109233 (2019)

    Google Scholar 

  62. Anton, A., Nieto, G., Gonzlo, G., Perez, V., Vega, G., Viejo, B.: A new predictive model for the state-of-charge of a high-power lithium-ion cell based on a PSO-optimized multivariated adaptive regression spline approach. IEEE Trans. Veh. Technol. 65, 4197–4208 (2016)

    Google Scholar 

  63. Lai, X., Wang, S., He, L., Zhou, L., Zheng, Y.: A hybrid state-of-charge estimation method based on credible increment for electric vehicle applications with large sensor and model errors. J. Energy Storage 27, 101106 (2020)

    Google Scholar 

  64. Xiong, R., Cao, J., Yu, Q., He, H.: Critical review on the battery state of charge estimation methods for electric vehicles. In: IEEE Access Special Section on Battery Energy Storage and Management System (2018)

  65. Peng, S., Chen, C., Shi, H., Yao, Z.: State of charge estimation of battery energy storage systems based on adaptive unscented Kalman filter with a noise statistics estimator. IEEE Acces 5, 13202–13212 (2017)

    Google Scholar 

  66. Zhang, C., Allafi, W., Dinh, Q., Ascencio, P., Marco, J.: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique. Energy 142, 678–688 (2018)

    Google Scholar 

  67. Xuan, D., Shi, X., Chen, J., Zhang, C., Wang, Y.: Real-time estimation of state-of-charge in lithium-ion batteries using improved central difference transform method. J. Clean. Prod. 252, 119787 (2020)

    Google Scholar 

  68. Duong, V., Bastawrous, H.A., See, K.W.: Accurate approach to the temperature effect on state of charge estimation in the LiFePO4 battery under dynamic load operation. Appl. Energy 204, 560–571 (2017)

    Google Scholar 

  69. Xu, Y., Hu, M., Zhou, A., Li, Y., Li, S., Fu, C., Gong, C.: State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter. Appl. Math. Model. 77, 1255–1272 (2020)

    MathSciNet  MATH  Google Scholar 

  70. Bi, Y., Choe, S.Y.: An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of Li(NiMnCo)O2/carbon battery using a reduced-order electrochemical model. Appl. Energy 258, 113925 (2020)

    Google Scholar 

  71. Bian, C., He, H., Yang, S.: Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries. Energy 191, 116538 (2020)

    Google Scholar 

  72. Huang, D., Chen, Z., Zheng, C., Li, H.: A model-based state-of-charging estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature. Energy 185, 847–861 (2019)

    Google Scholar 

  73. Abbas, G., Nawaz, M., Kamran, F.: Performance comparison of NARX & RNN-LSTM neural networks for LiFePO4 battery state of charge estimation, IBCAST (2019)

  74. Chemali, E., Kollmeyer, P.J., Preindl, M., Emadi, A.: State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach. J. Power Sources 400, 242–255 (2018)

    Google Scholar 

  75. Peng, J., Luo, J., He, H., Lu, B.: An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries. Appl. Energy 253, 113520 (2019)

    Google Scholar 

  76. Hu, L., Hu, X., Che, Y., Feng, F., Lin, X., Zhang, Z.: Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering. Appl. Energy 262, 114569 (2020)

    Google Scholar 

  77. Singh, K.V., Bansal, H.O., Singh, D.: Hardware-in-the-loop implementation of ANFIS based adaptive SoC estimation of lithium-ion battery for hybrid vehicle applications. J. Energy Storage 27, 101124 (2020)

    Google Scholar 

  78. Chemali, E., Kollmeyer, P.J., Preindl, M., Ahmend, R., Emadi, A.: Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries. IEEE Trans. Ind. Electron. 65, 6730–6739 (2018)

    Google Scholar 

  79. Fotouhi, A., Propp, K., Samaranayake, L., Auger, D., Longo, S.: A hardware-in-the-loop test rig for development of electric vehicle battery identification and state estimation algorithms. Int. J. Powertrains 7, 227–278 (2018)

    Google Scholar 

  80. Ng, K.S., Moo, C.S., Chen, Y.P., Hsieh, Y.C.: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 86, 1506–1511 (2009)

    Google Scholar 

  81. Schuster, S.F., Bach, T., Fleder, E., Muller, J., Brand, M., Sextl, G., Jossen, A.: Nonlinear aging characteristics of lithium-ion cells under different operational conditions. J. Energy Storage 1, 44–53 (2015)

    Google Scholar 

  82. Weng, C., Cui, Y., Sun, J., Peng, H.: On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression. J. Power Sources 235, 36–44 (2013)

    Google Scholar 

  83. Wang, L., Pan, C., Liu, L., Cheng, Y., Zhao, X.: On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis. Appl. Energy 168, 465–472 (2016)

    Google Scholar 

  84. Baghadadi, I., Briat, O., Hyan, P., Vinassa, J.M.: State of health assessment for lithium batteries based on voltage-time relaxation measure. Electrochim. Acta 194, 461–472 (2016)

    Google Scholar 

  85. Zhou, D., Xue, L., Song, Y., Chen, J.: On-line remaining useful life prediction of lithium-ion batteries based on the optimized gray model GM(1,1). Batteries 3(3), 21 (2017)

    Google Scholar 

  86. Hu, X., Feng, F., Liu, K., Zhang, L.: State estimation for advanced battery management: key challenges and future trends. Renew. Sustain. Energy Rev. 114, 109334 (2019)

    Google Scholar 

  87. Wei, Z., Tseng, K.J., Wai, N., Lim, T.M., Skyllas-Kazacos, M.: Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery. J. Power Sources 332, 389–398 (2016)

    Google Scholar 

  88. Waag, W., Kabitz, S., Sauer, D.: Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl. Energy 102, 885–897 (2013)

    Google Scholar 

  89. Li, X., Wang, Z., Yan, J.: Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression. J. Power Source 421, 56–67 (2019)

    Google Scholar 

  90. Guo, J., Li, Z., Pecht, M.: A Bayesian approach for Li-Ion battery capacity fade modeling and cycles to failure prognostics. J. Power Sources 281, 173–184 (2015)

    Google Scholar 

  91. Wang, Z., Ma, J., Zhang, L.: State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression. IEEE Access 5, 1286–21295 (2017)

    Google Scholar 

  92. Lievre, A., Sari, A., Venet, P., Hijazi, A., Ouattara-Brigaudet, M., Pelissier, S.: Practical online estimation of lithium-ion battery apparent series resistance for mild hybrid vehicles. IEEE Trans. Veh. Technol. 65(6), 4505–4511 (2016)

    Google Scholar 

  93. Wassiliadis, N., Adermann, J., Frericks, A., Pak, M., Reiter, C., Lohmann, B., Lienkamp, M.: Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: a use-case life cycle analysis. J Energy Storage 19, 73–87 (2018)

    Google Scholar 

  94. Topan, P.A., Ramadan, M.N., Fathoni, G., Cahyadi, A.I., Wahyunggoro, O.: State-of Charge (SOC) and State of Health (SOH) estimation on lithium polymer battery via Kalman filter, 2016 2nd ICST (2016)

  95. Qiu, X., Wu, W., Wang, S.: Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method. J. Power Sources 450, 227700 (2020)

    Google Scholar 

  96. Huang, S.C., Tseng, K.H., Liang, J.W., Chang, C.L., Pecht, M.G.: An Online SOC and SOH estimation model for lithium-ion batteries. Energies 10(4), 512 (2017)

    Google Scholar 

  97. Birkl, C.R., Roberts, M.R., McTurk, E., Bruce, P.G., Howey, D.A.: Degradation diagnostics for lithium ion cells. J. Power Sources 86, 341–373 (2017)

    Google Scholar 

  98. Saxena, S., Xing, Y., Kwon, D.I., Pecht, M.: Accelerated degradation model for C-rate loading of lithium-ion batteries. Electr. Power Energy Syst. 107, 438–445 (2019)

    Google Scholar 

  99. Kim, T.S., Adhikaree, A., Pandey, R., Kang, D.W., Kim, M.H., Oh, C.Y., Baek, J.W.: An on-board model-based condition monitoring for lithium-ion batteries. IEEE Trans. Ind. Appl. 55(2), 1835–1843 (2019)

    Google Scholar 

  100. Zhang, X., Wang, Y., Liu, C., Chen, Z.: A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm. J. Power Sources 376, 191–199 (2018)

    Google Scholar 

  101. Chen, L., Lu, Z., Lin, W., Li, J., Pan, H.: A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity. Measurement 116, 586–595 (2018)

    Google Scholar 

  102. Tang, X., Wnag, Y., Zou, C., Yao, K., Xia, Y., Gao, F.: A novel framework for lithium-ion battery modeling considering uncertainties of temperature and aging. Energy Convers. Manag. 180, 162–170 (2019)

    Google Scholar 

  103. Qu, J., Liu, F., Ma, Y., Fan, J.: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery. IEEE Access 7, 87178–87191 (2019)

    Google Scholar 

  104. Deng, Y., Ying, H., Jiaqiang, E., Zhu, H., Wei, K., Chen, J., Zhang, F., Liao, G.: Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries. Energy 176, 91–102 (2019)

    Google Scholar 

  105. Leijen, P., Steyn-Ross, D.A., Kularatna, N.: Use of effective capacitance variation as a measure of state-of-health in a series-connected automotive battery pack. IEEE Trans. Veh. Technol. 67, 1961–1968 (2017)

    Google Scholar 

  106. Cui, Y., Zuo, P., Du, C., Gao, Y., Yang, J.: State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method. Energy 144, 647–656 (2018)

    Google Scholar 

  107. Li, Y., Abdel-Monem, M., Gopalakrishnan, R., Berecibar, M., Nanini-Maury, E., Omar, N., Bossche, P., Mierlo, J.V.: A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter. J. Power Sources 373, 40–53 (2018)

    Google Scholar 

  108. Cabrera-Castillo, E., Niedermeier, F., Jossen, A.: Calculation of the state of Safety (SOS) for lithium ion batteries. J. Power Source 324, 509–520 (2016)

    Google Scholar 

  109. Xiong, R., He, H., Sun, F., Zhao, K.: Online estimation of peak power capability of Li-ion batteries in electric vehicles by a hardware-in-loop approach. Energies 5(5), 1455–1469 (2012)

    Google Scholar 

  110. Dong, G., Wei, J., Chen, Z.: Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries. J. Power Sources 328, 615–626 (2016)

    Google Scholar 

  111. Guo, G., Long, B., Cheng, B., Zhou, S., Xu, P., Cao, B.: Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. J. Power Sources 195, 2393–2398 (2010)

    Google Scholar 

  112. Kim, G.H., Pesaran, A., Spotnitz, R.: A three-dimensional thermal abuse model for lithium-ion cells. J. Power Sources 170, 476–489 (2007)

    Google Scholar 

  113. Xie, Y., He, X., Hu, X., Li, W., Zhang, Y., Liu, B., Sum, Y.: An improved resistance-based thermal model for a pouch lithium-ion battery considering heat generation of posts. Appl. Therm. Eng. 164, 114455 (2020)

    Google Scholar 

  114. Yang, N., Fu, Y., Yue, H., Zheng, J., Zhang, X., Yang, C., Wang, J.: An improved semi-empirical model for thermal analysis of lithium-ion batteries. Electrochim. Acta 311, 8–20 (2019)

    Google Scholar 

  115. Zhang, C., Li, K., Deng, J.: Real-time estimation of battery internal temperature based on a simplified thermoelectric model. J. Power Sources 302, 146–154 (2016)

    Google Scholar 

  116. Zhu, J., Sun, Z., Wei, X., Dai, H.: Battery internal temperature estimation for LiFePO4 battery based on impedance phase shift under operating conditions. Energies 10(60), 60 (2017)

    Google Scholar 

  117. Jeong, M.G., Cho, J.H., Lee, B.J.: Heat transfer analysis of a high-power and large-capacity thermal battery and investigation of effective thermal model. J. Power Sources 424, 35–41 (2019)

    Google Scholar 

  118. Li, J., Sun, D., Jin, X., Shi, W., Sun, C.: Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation. Appl. Energy 254, 113574 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS), granted financial resource from the Nuclear Safety and Security Commission (NSSC), Republic of Korea. (No. 1805006) and a Grant (20TLRP-C135446-01, Development of Hybrid Electric Vehicle Conversion Kit for Diesel Delivery Trucks and its Commercialization for Parcel Services) from the Transportation & Logistics Research Program (TLRP) funded by the Ministry of Land, Infrastructure, and Transportation of the Korean government.

Funding

Funding was provided by Korea Electric Power Corporation (KR) (Grant no. R19XO01-45) and Korea Institute of Energy Technology Evaluation and Planning (KR) (Grant no. 20182410105280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Ahn, J., Kang, T. et al. Review of state-of-the-art battery state estimation technologies for battery management systems of stationary energy storage systems. J. Power Electron. 20, 1526–1540 (2020). https://doi.org/10.1007/s43236-020-00122-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00122-7

Keywords

Navigation