Skip to main content
Log in

On the Lyapunov Type Inequality

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

A.M. Lyapunov proved inequality, which enables us to estimate distance between two consecutive zeros a and b of the solution of linear differential equation of the second order x″(t) + q(t)x(t) = 0, where q(t) is a continuous for t ∈ [a, b] function. In the present paper we solve analogous problem for the linear differential equation x″(t) + p(t)x′(t) + q(t)x(t) = 0. The obtained inequality is applicable for estimations of the periods of periodic solutions of non-linear differential equations such as A. Lienard and B. Van der Pol equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lyapunov, A.M. “Stability of motion: general problem”, International J. Control 55 (3), 701–767 (1992).

    Google Scholar 

  2. Wintner, A. On the non-existence of conjugate points, American J. Math. 73, 368–380 (1951).

    MathSciNet  MATH  Google Scholar 

  3. Yang Xiaojing “On Liapunov-type inequality for certain higher-order differential equations”, Appl. Math. and Computation 134 (2–3), 307–317 (2003).

    MathSciNet  Google Scholar 

  4. Niculescu, C.P. “A new look at the Lyapunov inequality”, Ann. Academy Romanian Sci. Ser. Math. and Appl. 3 (1), 207–217 (2011).

    MathSciNet  MATH  Google Scholar 

  5. Cheng Sui-Sun A discrete analogue of the inequality of Lyapunov, Hokkaido Math. J. 12, 105–112 (1983).

    MathSciNet  MATH  Google Scholar 

  6. Zafer, A. “Discrete linear Hamiltonian systems: Lyapunov type inequalities, stability and disconjugacy criteria”, J. Math. Anal. and Appl. 396 (2), 606–617 (2012).

    MathSciNet  MATH  Google Scholar 

  7. Agarwal, R.P., Özbekler, A. “Lyapunov type inequalities for second order forced mixed nonlinear impulsive differential equations”, Appl. Math. and Computation 282, 216–225 (2016).

    MathSciNet  MATH  Google Scholar 

  8. Jlelia, M., Kiraneb, M., Sameta, B. “Lyapunov-type inequalities for fractional partial differential equations”, Appl. Math. Letters 66, 30–39 (2017).

    MathSciNet  Google Scholar 

  9. Brown, R.C., Hinton, D.B. “Lyapunov inequalities and their applications” (in: Survey on Classical Inequalities. Math. and Its Appl. 517, pp. 1–25 (Kluwer Academic, Dordrecht, 2000)).

    MathSciNet  MATH  Google Scholar 

  10. Hartman, P. Ordinary differential equations (Mir, Moscow, 1970) [in Russian].

    MATH  Google Scholar 

  11. Komlenko, Yu.V. “Conditions of solvability of certain boundary-value problems for ordinary linear differential equation of second order”, DAN USSR 174 (5), 1018–1020 (1967).

    MathSciNet  Google Scholar 

  12. Liénard, A. “Étude des oscillations entreténues”, Revue genérale de l’électricité 23, 901–912 (1928).

    Google Scholar 

  13. Liénard, A. “Étude des oscillations entreténues”, Revue générale de l’électricité 23, 946–954 (1928).

    Google Scholar 

  14. Levinson, N., Smith, O. “A general equation for relaxation oscillations”, Duke Math. J. 9 (2), 382–403 (1942).

    MathSciNet  MATH  Google Scholar 

  15. van der Pol, B. “On relaxation-oscillations”, The London, Edinburgh and Dublin Phil. Magazine and J. Sci. 2, 978–992 (1927).

    MATH  Google Scholar 

  16. Andronov, A.A., Vitt, A.A., Haikin, S.E. Theory of oscillations (2-nd ed.) (GIPhML, Moscow, 1959).

    Google Scholar 

  17. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 2003).

    MATH  Google Scholar 

  18. van der Pol, B., van der Mark, J. “The heartbeat considered as a relaxation oscillation, and an electrical model of the heart”, The London, Edinburgh and Dublin Philosophical Magazine and J. Sci. 6, 763–775 (1928).

    Google Scholar 

  19. Fitzhugh, F. “Impulses and physiological states in theoretical models of nerve membranes”, Biophysics J. 1, 445–466 (1961).

    Google Scholar 

  20. Nagumo, J., Arimoto, S., Yoshizawa, S. “An active pulse transmission line simulating nerve axon”, Proc. of the Institute of Radio Engineers 50, 2061–2070 (1962).

    Google Scholar 

  21. Glass, L. Theory of Heart (Springer, New York-Heidelberg-Berlin, 1990).

    MATH  Google Scholar 

  22. Salasnich, L. “Instabilities, point attractors and limit cycles in an inflationary universe”, Modern Phys. Letters A 10, 3119–3127 (1995).

    Google Scholar 

  23. Edelstein-Keshet, L. Mathematical Models in Biology (Random House, New York, 1988).

    MATH  Google Scholar 

  24. Poland, D. “Loci of limit cycles”, Phys. Review E 49, 157–165 (1994).

    MathSciNet  Google Scholar 

  25. Albarakati, W.A., Lloyd, N.G., Pearson, J.M. “Transformation to Liénard form”, Electronic J. Diff. Equat. 76, 1–11 (2000).

    MATH  Google Scholar 

  26. Ignat’ev, A.O., Kirichenko, V.V. “On necessary conditions for global asymptotic stability of equilibrium for the Liénard equation”, Math. Notes 93 (1), 75–82 (2013).

    MathSciNet  MATH  Google Scholar 

  27. Bowman, T.T. “Periodic solutions of Lienard systems with symmetries”, Nonlinear Anal. 2 (4), 457–464 (1978).

    MathSciNet  MATH  Google Scholar 

  28. Carletti, T., Villari, G. “A note on existence and uniqueness of limit cycles for Liénard systems”, J. Math. Anal. and Appl. 307 (2), 763–773 (2005).

    MathSciNet  MATH  Google Scholar 

  29. Odani, K. “Existence of exactly N periodic solutions for Liénard systems”, Funkcialaj Ekvacioj 39, 217–234 (1996).

    MathSciNet  MATH  Google Scholar 

  30. Ignatyev, A.O. “The domain of existence of a limit cycle of Liénard system”, Lobachevskii J. Math. 38, 271–279 (2017).

    MathSciNet  MATH  Google Scholar 

  31. Filippov, A.F. “A sufficient condition for the existence of a stable limit cycle for an equation of the second order”, Mat. Sb. (N.S.) 30 (72), 171–180 (1952).

    MathSciNet  Google Scholar 

  32. Neumann, D.A., Sabbagh, L. “Periodic solutions of Lienard systems”, J. Math. Anal. and Appl. 62 (1), 148–156 (1978).

    MathSciNet  MATH  Google Scholar 

  33. Sugie, J., Hara, T. “Non-existence of periodic solutions of the Lienard system”, J. Math. Anal. and Appl. 159 (1), 224–236 (1991).

    MathSciNet  MATH  Google Scholar 

  34. Sabatini, M. “On the period function of Lienard systems”, J. Diff. Equat. 152, 467–487 (1999).

    MathSciNet  MATH  Google Scholar 

  35. Ignatiev, A.O. “Estimation for the amplitude of the limit cycle of the Liénard equation”, Differential equations 53, 302–310 (2017).

    MathSciNet  Google Scholar 

  36. Smirnov, A.D. “Lections on models of macroeconomy”, Higher School of Economics Economic J. 1, 87–122 (2000).

    Google Scholar 

  37. Meiss, J.D. Differential dynamical systems (Soc. Industrial and Appl. Math., Philadelphia, 2007).

    MATH  Google Scholar 

  38. Odani, K. “The limit cycle of the van der Pol equation is not algebraic”, J. Diff. Equat. 115 (1), 146–152 (1995).

    MathSciNet  MATH  Google Scholar 

  39. Dorodnitsyn, A.A. “Asymptotic solution of Van der Pol’s equation”, J. Appl. Math. Mech. 11 (3), 313–328 (1947).

    MathSciNet  MATH  Google Scholar 

  40. Sudakov, V.F. “On the question of limit cycle of the Van der Pol generator in relaxation regime”, Vestn. N.E. Bauman MGTU. Ser. Priborostroenie 1, 51–57 (2013).

    Google Scholar 

  41. Buonomo, A. “The periodic solution of van der Pol’s equation”, SIAM J. Appl. Math. 59 (1), 156–171 (1999).

    MathSciNet  MATH  Google Scholar 

  42. Greenspan, D. “Numerical approximation of periodic solutions of van der Pol’s equation”, J. Math. Anal. Appl. 39, 574–579 (1972).

    MathSciNet  MATH  Google Scholar 

  43. Akulenko, L.D., Korovina, L.I., Kumakshev, S.A., Nesterov, S.V. “Self-sustained oscillations of Rayleigh and Van der Pol oscillators with moderately large feedback factors”, J. Appl. Math. Mech. 68 (2), 241–248 (2004).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Ignatiev.

Additional information

Russian Text © The Author(s), 2020, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, No. 6, pp. 21–29.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatiev, A.O. On the Lyapunov Type Inequality. Russ Math. 64, 16–23 (2020). https://doi.org/10.3103/S1066369X20060043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X20060043

Key words

Navigation