Skip to main content
Log in

Rotational Tuning of a Holographic Grating Period in a Mirrorless Interferometer with a Fixed Photodetector

  • Physical and Engineering Fundamentals of Microelectronics and Optoelectronics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Within the framework of geometric optics, this study analyzes the rotational tuning of the period of an interference pattern formed by converging light beams on a photodetector that is fixed relative to a mirrorless two-beam interferometer based on a beam-splitting cube. Equations are derived, whose solutions are the dependences of the tuning range on the base position of the initial light beam on the input surface of the cube and on the diameter of this beam. These dependences are obtained for several refractive indices of the cube material, and the significance of this parameter for the characteristics of the interferometer under study is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Lu and R. H. Lipson, “Interference Lithography: A Powerful Tool for Fabricating Periodic Structures,” Laser Photon. Rev. 4 (4), 568–580 (2010).

    Article  ADS  Google Scholar 

  2. N. M. Ganzherli, S. N. Gulyaev, and I. A. Maurer, “The Effect of Short-Wave UV Radiation in Recording Holographic Structures on Gelatin-Containing Recording Media (Overview),” Optika i Spektroskopiya 125 (1), 62–70 (2018) [Optics and Spectroscopy 125 (1), 65–73 (2018)].

    Google Scholar 

  3. V. A. Barachevsky, “The Current Status of the Development of Light-Sensitive Media for Holography (a Review),” Optika i Spektroskopiya 124 (3), 371–399 (2018) [Optics and Spectroscopy 124 (3), 373–407 (2018)].

    Google Scholar 

  4. Y. Tomita, E. Hata, K. Momose, et al., “Photopolymerizable Nanocomposite Photonic Materials and Their Holographic Applications in Light and Neutron Optics,” J. Modern Opt. 63 (3), S1–S31 (2016).

    Article  Google Scholar 

  5. A. V. Veniaminov and U. V. Mahilny, “Holographic Polymer Materials with Diffusion Development: Principles, Arrangement, Investigation, and Applications,” Optika i Spektroskopiya 115 (6), 1014–1038 (2013) [Optics and Spectroscopy 115 (6), 906–930 (2013)].

    Google Scholar 

  6. J. Guo, M. R. Gleeson, and J. T. Sheridan, “A Review of the Optimization of Photopolymer Materials for Holographic Data Storage,” Phys. Res. Intern. 2012, ID 803439.

  7. V. Yu. Venediktov, G. E. Nevskaya, and M. G. Tomilin, “Liquid Crystals in Dynamic Holography (Review),” Optika i Spektroskopiya 111 (1), 121–142 (2011) [Optics and Spectroscopy 111 (1), 113–133 (2011)].

    Google Scholar 

  8. S. L. Mikerin and V. D. Ugozhaev, “Two-Beam Interferometer with a Fixed Photodetector Tuned by a Mobile Mirror,” Prikladnaya Fotonika 5 (3), 218–237 (2018).

    Google Scholar 

  9. S. L. Mikerin and V. D. Ugozhaev, “A Simple Two-Ray Interferometer Based on a Beamsplitter Cube,” Optika i Spektroskopiya 111 (6), 1019–1025 (2011) [Optics and Spectroscopy 111 (6), 973–979 (2011)].

    Google Scholar 

  10. S. L. Mikerin and V. D. Ugozhaev, “Reconfigurable Holographic Interferometer with Fixed Mirrors,” Avtometriya 48 (4), 20–32 (2012) [Optoelectron., Instrum. Data Process. 48 (4), 341–350 (2012)].

    Google Scholar 

  11. S. L. Mikerin and V. D. Ugozhaev, “Tunable Holographic Interferometer with a Beam-Splitting Unit and Fixed Mirrors,” Avtometriya 50 (2), 110–120 (2014) [Optoelectron., Instrum. Data Process. 50 (2), 201–209 (2014)].

    Google Scholar 

  12. S. L. Mikerin and V. D. Ugozhaev, Interferometers: Fundamentals, Methods, and Applications (Nova Science Publishers, Hauppauge, New York, 2015).

    Google Scholar 

  13. V. D. Ugozhaev, “Rotationally Tunable Two-Beam Interferometer with a Fixed Photosensitive Element. Part I. Interferometer Based on a Beam-Splitter Cube,” Avtometriya 52 (2), 57–65 (2016) [Optoelectron., Instrum. Data Process. 52 (2), 153–160 (2016)].

    Google Scholar 

  14. V. D. Ugozhaev, “Limiting Characteristics of a Rotationally Tunable Two-Beam Interferometer with a Fixed Photosensitive Element,” Avtometriya 52 (4), 118–125 (2016) [Optoelectron., Instrum. Data Process. 52 (4), 413–420 (2016)].

    Google Scholar 

  15. V. D. Ugozhaev, RF Pat. 2626062 S1. Two-Beam Interferometer Publ. 21.07.2017, Bul. No. 21.

  16. V. D. Ugozhaev, “Rotationally Tunable Two-Beam Interferometer with a Fixed Photosensitive Element. Part II. Interferometer Based on a Beam-Splitter Unit,” Avtometriya 54 (4), 67–77 (2018) [Optoelectron., Instrum. Data Process. 54 (4), 375–384 (2018)].

    Google Scholar 

  17. S. L. Mikerin and V. D. Ugozhaev, RF Pat. 2667335 S1. Two-Beam Interferometer (Versions). Publ. 18.09.2018, Bul. No. 26.

  18. S. L. Mikerin and V. D. Ugozhaev, “Interferometric System for Recording Photon Crystals with Independently Varied Periods,” in Proceedings of the International Scientific Conference “SibOptika-2018”, Vol. 1 (Izdate’lstvo Sibirskogo Gosudarstvennogo Universiteta Geosistem i Tekhnologii, Novosibirsk, 2018) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Ugozhaev.

Additional information

Russian Text © The Author(s), 2020, published in Avtometriya, 2020, Vol. 56, No. 1, pp. 109–123.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugozhaev, V.D. Rotational Tuning of a Holographic Grating Period in a Mirrorless Interferometer with a Fixed Photodetector. Optoelectron.Instrument.Proc. 56, 89–100 (2020). https://doi.org/10.3103/S8756699020010124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020010124

Keywords

Navigation