Skip to main content
Log in

Predicting the Possibility of Oleophilizing Surfaces of Copper Phthalocianin on the Basis of Reactivity Descriptors

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The possibility of predicting the effectiveness of wetting agents to increase the oleophilicity of surfaces of copper phthalocyanine is considered. The proposed way of predicting is based on calculating certain reactivity descriptors (charges on atoms, energy and localization of boundary orbitals, molecular electrostatic potential, absolute hardness (according to Pearson), and the index of electrophilicity) of phthalocyanine copper and surface-active substances intended for use as wetting agents. It is shown that the agents’ energies of interaction and orientation of their molecules on surfaces of the pigment can be considered criteria of their effectiveness. The localization of the predicted and calculated active sorption centers is verified via quantum-chemical modeling using the density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. A. Degtyarev, A. V. Trishina, and A. G. Tarakanov, Butler. Comm. 55 (7), 22 (2018).

    Google Scholar 

  2. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  3. P. K. Chattaraj, U. Sarkar, and D. R. Roy, J. Chem. Rev. 106, 2065 (2006).https://doi.org/10.1021/cr040109f

    Article  CAS  Google Scholar 

  4. C. Brown, J. Chem. Soc. A, 2488 (1968).https://doi.org/10.1039/j19680002488

  5. C. Defeyt, P. Venabeele, and B. Gilbert, et al., J. Raman Spectrosc. 43, 1772 (2012). https://doi.org/10.1002/jrs.4125

    Article  CAS  Google Scholar 

  6. P. Kaur, R. Sachdeva, S. Singh, and G. S. S. Saini, AIP Conf. Proc. 1728, 020281 (2016). https://doi.org/10.1063/1.4946332

    Article  CAS  Google Scholar 

  7. H. Vazquez, P. Jelinek, M. Brandbyge, et al., Appl. Phys. A 95, 257 (2009). https://doi.org/10.1007/s00339-008-5022-0

    Article  CAS  Google Scholar 

  8. T. V. Basova, V. G. Kiselev, B.-E. Schuster, et al., J. Raman Spectrosc. 40, 2080 (2009). https://doi.org/10.1002/jrs.2375

    Article  CAS  Google Scholar 

  9. D. Stradi, C. Diaz, and M. Alcami, Theor. Chem. Acc. 128, 497 (2011).https://doi.org/10.1007/s00214-010-0852-1

    Article  CAS  Google Scholar 

  10. A. A. Doroshenko, I. V. Nechaev, and A. V. Vvedensky, Butler. Commun. 41, 135 (2015).

    Google Scholar 

  11. A. Teale, F. de Proft, and D. Tozer, J. Chem. Rhys. 129, 044110 (2008). https://doi.org/10.1063/1.2961035

    Article  CAS  Google Scholar 

  12. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  13. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989). https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  14. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992). https://doi.org/10.1063/1.462569

    Article  CAS  Google Scholar 

  15. N. B. Balabanov and K. A. Peterson, J. Chem. Phys. 123, 064107 (2005). https://doi.org/10.1063/1.1998907

    Article  CAS  Google Scholar 

  16. N. B. Balabanov and K. A. Peterson, J. Chem. Phys. 125, 074110 (2006). https://doi.org/10.1063/1.2335444

    Article  CAS  PubMed  Google Scholar 

  17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  18. D. N. Laikov, Chem. Phys. Lett. 416, 116 (2005). https://doi.org/10.1016/j.cplett.2005.09.046

    Article  CAS  Google Scholar 

  19. A. Granovsky, Firefly Version 8: Introduction to the Firefly, Firefly (formerly PC GAMESS) Home Page. http://classic.chem.msu.su/gran/gamess/index.html. Accessed June 4, 2019.

  20. D. N. Laikov and Y. A. Ustynyuk, Russ. Chem. Bull. 54, 820 (2005). https://doi.org/10.1007/s11172-005-0329-x

    Article  CAS  Google Scholar 

  21. B. M. Bode and M. S. Gordon, J. Mol. Graphics Mod. 16, 133 (1998). https://doi.org/10.1016/S1093-3263(99)00002-9

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of project no. 43-MU-19 (02). It was supported by a grant for the Support of Applied Research by Young Scientists in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Degtyarev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degtyarev, A.A., Trishina, A.V., Dyachkova, T.P. et al. Predicting the Possibility of Oleophilizing Surfaces of Copper Phthalocianin on the Basis of Reactivity Descriptors. Russ. J. Phys. Chem. 94, 1694–1698 (2020). https://doi.org/10.1134/S0036024420080051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420080051

Keywords:

Navigation