Skip to main content
Log in

Acidity Constants of Lignin Model Compounds in the Electronically Excited State in Water–N,N-Dimethylformamide Mixtures

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The acidity constants of a number of guaiacyl phenols simulating structural fragments of natural lignins in the electronically excited state in water–N,N-dimethylformamide mixtures are determined by fluorescence spectroscopy using the Förster cycle. The differentiating effect of an aprotic solvent on the acidity of phenols is shown. It is found that the pKa values in the excited state are associated with the properties of para-substituents with respect to the phenolic hydroxyl group. The highest capacity for acid ionization during photoexcitation is exhibited by compounds containing an electron-withdrawing carbonyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. C. Heitner, D. Dimmel, and J. A. Smidt, Lignin and Lignans: Advances in Chemistry (CRC, Boca Ration, 2010).

    Google Scholar 

  2. K. G. Bogolitsyn, V. V. Lunin, D. S. Kosyakov, A. P. Karmanov, et al., Physical Chemistry of Lignin (Akademkniga, Moscow, 2010) [in Russian].

    Google Scholar 

  3. D. S. Kosyakov, N. S. Gorbova, K. G. Bogolitsyn, and L. V. Gusakov, Russ. J. Phys. Chem. A 81, 1076 (2007). https://doi.org/10.1134/S0036024407070126

    Article  CAS  Google Scholar 

  4. A. A. Freitas, C. P. Silva, G. T. M. Silva, et al., Photochem. Photobiol. 94, 1086 (2018). https://doi.org/10.1111/php.12944

    Article  CAS  PubMed  Google Scholar 

  5. K. G. Bogolitsyn, N. S. Gorbova, and D. S. Kosyakov, Russ. J. Phys. Chem. A 77, 590 (2003).

    Google Scholar 

  6. L. Yang, J. Niu, Y. Zhan, et al., Chin. J. Chem. 36, 42 (2017). https://doi.org/10.1002/cjoc.201700534

    Article  CAS  Google Scholar 

  7. G. Cilento and W. Adam, Free Radical Biol. Med. 19, 103 (1995). https://doi.org/10.1016/0891-5849(95)00002-F

    Article  CAS  Google Scholar 

  8. S. Liukko, V. Yasapuro, and T. Liitia, Holzforschung. 61, 509 (2007).https://doi.org/10.1515/HF.2007.107

    Article  CAS  Google Scholar 

  9. C. Jaeger, A. Nourmamode, and A. Castellan, Holzforschung. 47, 375 (1993). https://doi.org/10.1515/hfsg.1993.47.5.375

    Article  CAS  Google Scholar 

  10. D. S. Kosyakov, N. V. Ul’yanovskii, E. A. Anikeenko, and N. S. Gorbova, Rapid Commun. Mass Spectrom. 30, 2099 (2016).https://doi.org/10.1002/rcm.7686

    Article  CAS  PubMed  Google Scholar 

  11. K. Radotic, A. Kalauzi, D. Djikanovic, et al., J. Photochem. Photobiol. B 83, 1 (2006).https://doi.org/10.1016/j.jphotobiol.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  12. B. Albinsson, L. Shiming, K. Lundquist, and R. Stomberg, J. Mol. Struct. 508, 19 (1999).https://doi.org/10.1016/S0022-2860(98)009132

    Article  CAS  Google Scholar 

  13. N. S. Gorbova, D. S. Kosyakov, and K. G. Bogolitsyn, Izv. Vyssh. Uchebn. Zaved., Zh. Lesn., No. 2, 129 (2010).

  14. M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules (VCH, Weinheim, 1995).

    Google Scholar 

  15. J. R. Lakowich, Principles of Fluorescence Spectroscopy (Kluwer, New York, 1999).

    Book  Google Scholar 

  16. Q. Wang, Y. Niu, R. Wang, et al., Chem. Asian J. 13, 1735 (2018).https://doi.org/10.1002/asia.201800457

    Article  CAS  PubMed  Google Scholar 

  17. T. Forster, Zeitschr. Electrochem. 54, 42 (1950). https://doi.org/10.1002/bbpc.19500540111

    Article  CAS  Google Scholar 

  18. N. S. Gorbova, Cand. Sci. (Chem.) Dissertation (Arkhangel’sk, 2002).

  19. S. R. Manohara, V. U. Kumar, Shivakumariaiah, and L. Gerward, J. Mol. Liq. 181, 97 (2013). https://doi.org/10.1016/j.molliq.2013.02.018

    Article  CAS  Google Scholar 

  20. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry (Weinheim, Wiley-VCH, 2011).

    Google Scholar 

  21. C. Reichardt, Chem. Rev. 94, 2319 (1994). https://doi.org/10.1021/cr00032a005

    Article  CAS  Google Scholar 

  22. M. Ravi, T. Soujanya, A. Samanta, and T. P. Radhakrishnan, J. Chem. Soc. Faraday Trans. 91, 2739 (1995). https://doi.org/10.1039/FT9959102739

    Article  Google Scholar 

  23. D. D. Thiare, A. Khnote, A. Diop, et al., J. Mol. Liq. 211, 640 (2015).https://doi.org/10.1016/j.molliq.2015.07.071

    Article  CAS  Google Scholar 

  24. B. Szczepanik, J. Mol. Struct. 1099, 209 (2015). https://doi.org/10.1016/j.molstruc.2015.05.062

    Article  CAS  Google Scholar 

  25. B. Valeur, Molecular Fluorescence. Principles and Application (Wiley-VCH, Weinheim, 2002).

    Google Scholar 

  26. S. Tetteh, R. Zugle, J. Prosper Kwaku Adotey, and A. Quashie, J. Spectrosc. 2018, 4193657 (2018). doi 1155/2018/4193657

Download references

ACKNOWLEDGMENTS

This work was performed on equipment of the Core Facility Center “Arktika” of Northern (Arctic) Federal University.

Funding

This work was supported by the Russian Science Foundation, project no. 18-73-10138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kosyakov.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, M.V., Kosyakov, D.S., Gorbova, N.S. et al. Acidity Constants of Lignin Model Compounds in the Electronically Excited State in Water–N,N-Dimethylformamide Mixtures. Russ. J. Phys. Chem. 94, 1587–1595 (2020). https://doi.org/10.1134/S0036024420080178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420080178

Keywords:

Navigation