Skip to main content
Log in

Depolarization of Lithium Iron Phosphate Batteries by Multi-Walled Carbon Nanotube/Graphite Double-Layer Anode

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Polarization of lithium iron phosphate-graphite batteries greatly affects its quality and life. In order to reduce the electrode polarization, the multi-walled carbon nanotubes/graphite double-layer anode was proposed to improve the performance of the battery, and the depolarization of the graphite anode electrode interface was studied. For the study of depolarization the electrode materials were characterized by scanning electron microscopy, XRD powder diffraction, cyclic voltammetry and AC impedance. The effect of double-layer anode on the charge and discharge of lithium batteries was also discussed. The results show that the discharge capacity increased by nearly two times by the conductive network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).

    Article  CAS  Google Scholar 

  2. Y.-F. Wu, Y.-N. Liu, S.-W. Guo, S.-N. Zhang, T.‑N. Lu, Z.-M. Yu, C.-S. Li, and Z.-P. Xi, J. Power Sources 256, 336 (2014).

    Article  CAS  Google Scholar 

  3. X. Zhao, Y. Bi, S. Choe, and S. Kim, Electrochim. Acta 280, 41 (2018).

    Article  CAS  Google Scholar 

  4. S. Panchal, M. Akhoundzadehr Haji, K. Raahemifar, M. Fowler, and R. Fraser, Int. J. Heat Mass Transfer 135, 368 (2019).

    Article  CAS  Google Scholar 

  5. S. Sun, T. Guan, P. Zuo, Y. Gao, X. Cheng, C. Du, and G. Yin, ChemElectroChem 5, 2301 (2018).

    Article  CAS  Google Scholar 

  6. C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.‑B. Leriche, M. Morcrette, J.-M. Tarascon, and C. Masquelier, J. Electrochem. Soc. 152, A913 (2005).

    Article  CAS  Google Scholar 

  7. S. Y. Chung, J. T. Bloking, and Y. M. Chiang, Nat. Mater. 1, 123 (2002).

    Article  CAS  Google Scholar 

  8. R. Amin, P. Balaya, and J. Maier, Electrochem. Solid State Lett. 10, A13 (2007).

    Article  CAS  Google Scholar 

  9. B. S. Lalia, T. Shah, and R. Hashaikeh, J. Power Sources 278, 314 (2015).

    Article  CAS  Google Scholar 

  10. X. Li, D. Luo, X. Zhang, and Z. Zhang, J. Power Sources 291, 75 (2015).

    Article  CAS  Google Scholar 

  11. Z. Ma, Y. Fan, G. Shao, G. Wang, J. Song, and T. Liu, ACS Appl. Mater. Interfaces 7, 2937 (2015).

    Article  CAS  Google Scholar 

  12. Y. Li, J. Wang, J. Yao, H. Huang, Z. Du, H. Gu, and Z. Wang, Mater. Chem. Phys. 224, 293 (2019).

    Article  CAS  Google Scholar 

  13. Y. Liu, J. Liu, J. Wang, M. N. Banis, B. Xiao, A. Lushington, W. Xiao, R. Li, T. Sham, G. Liang, and X. Sun, Nat. Commun. 9, 929 (2018)

    Article  Google Scholar 

  14. J. Morales, R. Trócoli, E. Rodríguez-Castellón, S. Franger, and J. Santos-Peña, J. Electroanal. Chem. 631, 29 (2009).

    Article  CAS  Google Scholar 

  15. Yahui Du, Yufeng Tang, and Chengkang Chang, J. Phys. Chem. Solids 107, 36 (2017).

  16. S. J. Rajobaa, L. D. Jadhava, R. S. Kalubarmeb, P. S. Patilc, S. Varmad, and B. N. Wanid, Ceram. Int. 44, 6886 (2018).

    Article  Google Scholar 

  17. J. Mun, H. Ha, and W. Choi, J. Power Sources 251, 386 (2014).

    Article  CAS  Google Scholar 

  18. H. Tian, X. Zhao, J. Zhang, M. Li, and H. Lu, ACS Appl. Energy Mater. 1, 3497 (2018).

    CAS  Google Scholar 

  19. J. Oh, J. Lee, Y. Jeon, S. Park, J. M. Kim, T. Hwang, and Y. Piao, ACS Sustainable Chem. Eng. 7, 306 (2019).

    Article  CAS  Google Scholar 

  20. C. Y. Wu, G. S. Cao, H. M. Yu, J. Xie, and X. B. Zhao, J. Phys. Chem. C 115, 23090 (2011).

    Article  CAS  Google Scholar 

  21. C. Chiang, C. Wang, and C. Chen, Mater. Sci. Eng. B 238–239, 42 (2018).

    Article  Google Scholar 

  22. Y. Lin, Y. Lin, T. Zhou, G. Zhao, Y. Huang, and Z. Huang, J. Power Sources 226, 20 (2013).

    Article  CAS  Google Scholar 

  23. W. Yiming, G. Giuli, A. Moretti, F. Nobili, K. T. Fehr, E. Paris, and R. Marassi, Mater. Chem. Phys. 155, 191 (2015).

    Article  CAS  Google Scholar 

  24. Y. Hu, J. Yao, Z. Zhao, M. Zhu, Y. Li, H. Jin, H. Zhao, and J. Wang, Mater. Chem. Phys. 141, 835 (2013).

    Article  CAS  Google Scholar 

  25. J. Yao, F. Wu, X. Qiu, N. Li, and Y. Su, Electrochim. Acta 56, 5587 (2011).

    Article  CAS  Google Scholar 

  26. Y. Mo, J. Liu, C. Meng, M. Xiao, S. Ren, L. Sun, S. Wang, and Y. Meng, Carbon 147, 19 (2019).

    Article  CAS  Google Scholar 

  27. N. D. Trinh, M. Saulnier, D. Lepage, and S. B. Schougaard, J. Power Sources 221, 284 (2013).

    Article  CAS  Google Scholar 

  28. C. Gong, F. Deng, C. P. Tsui, Z. Xue, Y. S. Ye, C. Y. Tang, X. Zhoum, and X. Xie, J. Mater. Chem. A 2, 19315 (2014).

    Article  CAS  Google Scholar 

  29. D. Goonetilleke, T. Faulkner, V. K. Peterson, and N. Sharma, J. Power Sources 394, 1 (2018).

    Article  CAS  Google Scholar 

  30. C. Chiang, H. Su, P. Wu, H. Liu, C. Hu, N. Sharma, V. K. Peterson, H. Hsieh, Y. Lin, W. Chou, C. Lee, J. Lee, and B. Shew, J. Phys. Chem. C 116, 24424 (2012).

    Article  CAS  Google Scholar 

  31. J. Zhao, J. He, J. Zhou, Y. Guo, T. Wang, S. Wu, X. Ding, R. Huang, and H. Xue, J. Phys. Chem. C 115, 2888 (2011).

    Article  CAS  Google Scholar 

  32. Z. Li, J. Yang, C. Li, S. Wang, L. Zhang, K. Zhu, and X. Wang, Chem. Mater. 30, 874 (2018).

    Article  CAS  Google Scholar 

  33. F. Omenya, N. A. Chernova, Q. Wang, R. Zhang, and M. S. Whittingham, Chem. Mater. 25, 2691 (2013).

    Article  CAS  Google Scholar 

  34. C. Zhu, X. Mu, J. Popovic, K. Weichert, P. A. van Aken, Y. Yu, and J. Maier, Nano Lett. 14, 5342 (2014).

    Article  CAS  Google Scholar 

  35. T. Liu, X. Li, S. Sun, X. Sun, F. Cao, T. Ohsaka, and J. Wu, Electrochim. Acta 269, 422 (2018).

    Article  CAS  Google Scholar 

  36. N. Wongittharom, T. Lee, C. Hsu, G. T. Fey, K. Huang, and J. Chang, J. Power Sources 240, 676 (2013).

    Article  CAS  Google Scholar 

  37. S. Theivaprakasama, D. R. MacFarlane, and S. Mitra, Electrochim. Acta 180, 737 (2015).

    Article  Google Scholar 

  38. G. Çakmaka and T. Öztürk, Diamond Relat. Mater. 96, 134 (2019).

    Article  Google Scholar 

  39. A. Milev, L. George, S. Khan, and P. Selvam, Electrochim. Acta 209, 565 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of the Open Science Foundation for Jiangsu Province Key Laboratory for Chemistry of Low-Dimentional Materials (grant no. JSKC17009), the Open Science Foundation for Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology (grant no. JSBEET1207), and the Science foundation for Huaiyin Normal University (grant no. 11HSGJBZ13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Z. Song or W. H. Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Song, Y.Z., Chen, D.L. et al. Depolarization of Lithium Iron Phosphate Batteries by Multi-Walled Carbon Nanotube/Graphite Double-Layer Anode. Russ. J. Phys. Chem. 94, 1628–1635 (2020). https://doi.org/10.1134/S003602442008004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442008004X

Keywords:

Navigation