Skip to main content
Log in

Efficient Optical MIMO–OFDM Channel Estimation Based on Correntropy Compressive Sensing

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The compressive sensing (CS) technique is widely used in the field of radio-frequency channel estimation. However, in optical wireless channel (OWC) estimation, CS needed to be adapted to cope with the nonlinear distortion resultant from the electrical-to-optical and optical-to-electrical conversion process of the OWC. Therefore, a robust CS channel estimation technique is proposed for the optical MIMO–OFDM system. The proposed CS channel estimation technique is based on higher-order statistics (HOS). In which, the correntropy is exploited as a HOS similarity measurement instead of the second-order statistics euclidean distance (ED) used with the conventional CS to handle the OWC nonlinear distortion. Herein, the ED is the most popular iterative CS algorithms such as orthogonal matching pursuits, sparsity adaptive matching pursuit, and self-aware step size sparsity adaptive matching pursuit is efficiently replaced by the HOS correntropy based CS to show the effectiveness of the proposed algorithm. Moreover, the most recent visible light communication system GLIM-OFDM is considered here to test the proposed technique. However, the pre-estimated channel state information (CSI) obtained from the previous OFDM frame is exploited as initial information in estimating the CSI of the current OFDM frame, which improves overall system performance. A comparison with the conventional CS reconstruction algorithms is conducted via extensive simulation analysis. The simulation results show the superiority of the bit error rate of the proposed correntropy based CS channel estimation scheme compared to the conventional CS-based channel estimation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hussein, H. S., Elsayed, M., Fakhry, M., & Sayed Mohamed, U. (2018). Energy and spectrally efficient modulation scheme for IoT applications. Sensors, 18, 4382.

    Article  Google Scholar 

  2. Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The Internet of Things: A survey of topics and trends. Information Systems Frontiers, 17, 261–274.

    Article  Google Scholar 

  3. Lv, L., Chen, J., Ni, Q., Ding, Z., & Jiang, H. (2018). Cognitive non-orthogonal multiple access with cooperative relaying: A new wireless frontier for 5G spectrum sharing. IEEE Communications Magazine, 56, 188–195.

    Article  Google Scholar 

  4. Haas, H. (2015). Visible light communication. In Optical fiber communication conference (p. Tu2G. 5).

  5. Islim, M. S., & Haas, H. (2016). Modulation techniques for Li-Fi. ZTE Communications, 14, 29–40.

    Google Scholar 

  6. Chatterjee, S., Agarwal, S., & Nath, A. (2015). Scope and challenges in light fidelity (LiFi) technology in wireless data communication. International Journal of Innovative Research in Advanced Engineering (IJIRAE, 2, 1–9.

    Google Scholar 

  7. Salmento, M. L. G., Soares, G. M., Alonso, J. M., & Braga, H. A. (2018). A dimmable offline LED driver with OOK-M-FSK modulation for VLC applications. IEEE Transactions on Industrial Electronics, 66, 5220–5230.

    Article  Google Scholar 

  8. Elgala, H., Mesleh, R., Haas, H., & Pricope, B. (2007). OFDM visible light wireless communication based on white LEDs. In 2007 IEEE 65th vehicular technology conference-VTC2007-spring, 2007 (pp. 2185–2189).

  9. Fernando, N., Hong, Y., & Viterbo, E. (2011). Flip-OFDM for optical wireless communications. In 2011 IEEE information theory workshop, 2011 (pp. 5–9.

  10. Azhar, A. H., Tran, T.-A., & O’Brien, D. (2012). A gigabit/s indoor wireless transmission using MIMO–OFDM visible-light communications. IEEE Photonics Technology Letters, 25, 171–174.

    Article  Google Scholar 

  11. Armstrong, J., & Lowery, A. J. (2006). Power efficient optical OFDM. Electronics Letters, 42, 370–372.

    Article  Google Scholar 

  12. Xiao, Y., Cao, J., Wang, Z., Long, C., Liu, Y., & He, J. (2019). Polar coded optical OFDM system with chaotic encryption for physical-layer security. Optics Communications, 433, 231–235.

    Article  Google Scholar 

  13. Elsayed, M., Hussein, H. S., & Mohamed, U. S. (2018). Fully generalised spatial modulation. In 2018 35th national radio science conference (NRSC), 2018 (pp. 274–282).

  14. Hussein, H., Esmaiel, H., & Jiang, D. (2018). Fully generalised spatial modulation technique for underwater communication. Electronics Letters, 54, 907–909.

    Article  Google Scholar 

  15. Hussein, H. S., & Elsayed, M. (2018). Fully-quadrature spatial modulation. In 2018 IEEE international black sea conference on communications and networking (BlackSeaCom), 2018 (pp. 1–5).

  16. Mesleh, R., Elgala, H., & Haas, H. (2011). Optical spatial modulation. IEEE/OSA Journal of Optical Communications and Networking, 3, 234–244.

    Article  Google Scholar 

  17. Basar, E., Wen, M., Mesleh, R., Di Renzo, M., Xiao, Y., & Haas, H. (2017). Index modulation techniques for next-generation wireless networks. IEEE Access, 5, 16693–16746.

    Article  Google Scholar 

  18. Yesilkaya, A., Basar, E., Miramirkhani, F., Panayirci, E., Uysal, M., & Haas, H. (2017). Optical MIMO–OFDM with generalized LED Index modulation. IEEE Transactions on Communications, 65, 3429–3441.

    Google Scholar 

  19. Hussein, H. S. (2019). Optical polar based MIMO–OFDM with fully generalised index-spatial LED modulation. IET Communications, 14(2), 282–289.

    Article  Google Scholar 

  20. Hussein, H. S., & Hagag, M. (2019). Optical MIMO–OFDM with fully generalized index-spatial LED modulation. IEEE Communications Letters, 23, 1556–1559.

    Article  Google Scholar 

  21. Hussein, H. S., Hagag, M., & Farrag, M. (2020). Extended spatial-index LED modulation for optical MIMO–OFDM wireless communication. Electronics, 9, 168.

    Article  Google Scholar 

  22. Li, Y., Tsonev, D., & Haas, H. (2013). Non-DC-biased OFDM with optical spatial modulation. In 2013 IEEE 24th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 486–490).

  23. Le Tran, M., Kim, S., Ketseoglou, T., & Ayanoglu, E. (2018). LED selection and MAP detection for generalized LED index modulation. IEEE Photonics Technology Letters, 30, 1695–1698.

    Article  Google Scholar 

  24. Lin, W.-F., Chow, C.-W., & Yeh, C.-H. (2015). Using specific and adaptive arrangement of grid-type pilot in channel estimation for white-lightLED-based OFDM visible light communication system. Optics Communications, 338, 7–10.

    Article  Google Scholar 

  25. Qian, X., Deng, H., & He, H. (2017). Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications. Optics Communications, 400, 150–155.

    Article  Google Scholar 

  26. Bai, C.-L., Zhang, S., Bai, S.-C., & Luo, Q.-L. (2014). Development of discrete Fourier transform-based channel estimation algorithms for a coherent optical orthogonal frequency division multiplexing transmission system. IET Communications, 8, 2528–2534.

    Article  Google Scholar 

  27. Hussein, Y. S., Alias, M. Y., & Abdulkafi, A. A. (2016). On performance analysis of LS and MMSE for channel estimation in VLC systems. In 2016 IEEE 12th international colloquium on signal processing and its applications (CSPA) (pp. 204–209).

  28. Zhao, H., Li, M., Wang, R., Liu, Y., & Song, D. (2014). Compressed sensing theory-based channel estimation for optical orthogonal frequency division multiplexing communication system. Optics Communications, 326, 94–99.

    Article  Google Scholar 

  29. Zhang, T., Guo, S., Chen, H., Zhong, F., & Ma, C. (2014). Enhancing the bit error rate of indoor visible light communication systems using adaptive channel estimation algorithm. IET Communications, 9, 501–507.

    Article  Google Scholar 

  30. Shi, X., Leung, S.-H., & Min, J. (2020). Adaptive least squares channel estimation for visible light communications based on tap detection. Optics Communications, 467, 125712.

    Article  Google Scholar 

  31. Hussein, H. S. (2018). Sparse MLD decoder for 1-bit ADC MIMO constant envelope modulation. In 2018 IEEE international black sea conference on communications and networking (BlackSeaCom) (pp. 1–5).

  32. Liu, W., Pokharel, P. P., & Príncipe, J. C. (2007). Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Transactions on Signal Processing, 55, 5286–5298.

    Article  MathSciNet  Google Scholar 

  33. Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53, 4655–4666.

    Article  MathSciNet  Google Scholar 

  34. Niaz, M. T., Imdad, F., Ejaz, W., & Kim, H. S. (2016). Compressed sensing-based channel estimation for ACO-OFDM visible light communications in 5G systems. EURASIP Journal on Wireless Communications and Networking, 2016, 268.

    Article  Google Scholar 

  35. Do, T. T., Gan, L., Nguyen, N., & Tran, T. D. (2008). Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In 2008 42nd Asilomar conference on signals, systems and computers (pp. 581–587).

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under Grant Number (R.G.P.I/202/41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamada Esmaiel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamir, A., Esmaiel, H. & Hussein, H.S. Efficient Optical MIMO–OFDM Channel Estimation Based on Correntropy Compressive Sensing. Wireless Pers Commun 115, 1955–1971 (2020). https://doi.org/10.1007/s11277-020-07663-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07663-x

Keywords

Navigation