Skip to main content

Advertisement

Log in

EEG Data Classification for Mental State Analysis Using Wavelet Packet Transform and Gaussian Process Classifier

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Stress is one of the most common problems that is faced by a majority of the students. Long-term stress can lead to serious health problems, for example, depression, heart disease, anxiety, and sleep disorder. This paper proposes an efficient stress level detection framework to detect the stress in students using Electroencephalogram (EEG) signals. The framework classifies stress into three levels; low stress, medium stress and high stress. In this experiment, EEG data is collected from six subjects by placing two electrodes in the prefrontal region. During each trial, the subject solves arithmetic questions under some time pressure. The EEG data is collected while the subject solves the question. The collected data is pre-processed using a band-pass filter to remove artefacts and appropriate features are extracted through the wavelet packet transform and PyEEG module. ReliefF feature selection method is used to select the best features for classification. The selected feature set is classified into three categories using Gaussian Classification. The proposed framework effectively classifies the level of stress with an accuracy of 94%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Selye, H. (1956). The stress of life. New York: McGraw-Hill.

    Google Scholar 

  2. Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. New York: Springer.

  3. Alonso, J., Romero, S., Ballester, M., Antonijoan, R., & Mañanas, M. (2015). Stress assessment based on eeg univariate features and functional connectivity measures. Physiological Measurement, 36(7), 1351.

    Article  Google Scholar 

  4. Le Fevre, M., Matheny, J., & Kolt, G. S. (2003). Eustress, distress, and interpretation in occupational stress. Journal of Managerial Psychology, 18(7), 726–744.

    Article  Google Scholar 

  5. Simmons, B. L., & Nelson, D. L. (2001). Eustress at work: The relationship between hope and health in hospital nurses. Health Care Management Review, 26(4), 7–18.

    Article  Google Scholar 

  6. Ribeiro, I. J., Pereira, R., Freire, I. V., de Oliveira, B. G., Casotti, C. A., & Boery, E. N. (2018). Stress and quality of life among university students: A systematic literature review. Health Professions Education, 4(2), 70–77.

    Article  Google Scholar 

  7. Reddy, K. J., Menon, K. R., & Thattil, A. (2018). Academic stress and its sources among university students. Biomedical and Pharmacology Journal, 11(1), 531–537.

    Article  Google Scholar 

  8. Pascoe, M. C., Hetrick, S. E., & Parker, A. G. (2020). The impact of stress on students in secondary school and higher education. International Journal of Adolescence and Youth, 25(1), 104–112.

    Article  Google Scholar 

  9. Cohen, S., Kamarck, T., & Mermelstein, R. (1994). Perceived stress scale. Measuring stress: A guide for health and social scientists. 10, 1–2.

  10. Koh, K. B., Park, J. K., & Kim, C. H. (2000). Development of the stress response inventory. Journal of Korean Neuropsychiatric Association, 39(4), 707–719.

    Google Scholar 

  11. Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23(1), 56.

    Article  Google Scholar 

  12. Hosseini, S. A., & Khalilzadeh, M. A. (2010). Emotional stress recognition system using EEG and psychophysiological signals: Using new labelling process of EEG signals in emotional stress state. In International conference on biomedical engineering and computer science (pp. 1–6). IEEE.

  13. Teplan, M., et al. (2002). Fundamentals of EEG measurement. Measurement Science Review, 2(2), 1–11.

    Google Scholar 

  14. Seo, S. H., Lee, J. T., & Crisan, M. (2010). Stress and EEG. Convergence and hybrid information technologies, 1(1), 413–424.

    Google Scholar 

  15. Tran, Y., Thuraisingham, R., Wijesuriya, N., Nguyen, H., & Craig, A. (2007). Detecting neural changes during stress and fatigue effectively: A comparison of spectral analysis and sample entropy. In 2007 3rd international IEEE/EMBS conference on neural engineering (pp. 350–353). IEEE.

  16. Cruz, A., Pires, G., Lopes, A. C., & Nunes, U. J. (2019). Detection of stressful situations using GSR while driving a BCI-controlled wheelchair. In 2019 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 1651–1656). IEEE.

  17. Hamid, N. H. A., Sulaiman, N., Aris, S. A. M., Murat, Z. H., & Taib, M. N. (2010). Evaluation of human stress using EEG power spectrum. In 2010 6th International colloquium on signal processing & its applications (pp. 1–4). IEEE.

  18. van den Haak, P., van Lon, R., van der Meer, J., & Rothkrantz, L. (2010). Stress assessment of car-drivers using EEG-analysis. In Proceedings of the 11th international conference on computer systems and technologies and workshop for PhD students in computing on international conference on computer systems and technologies (pp. 473–477).

  19. Al-Shargie, F., Tang, T. B., Badruddin, N., & Kiguchi, M. (2018). Towards multilevel mental stress assessment using SVM with ECOC: An EEG approach. Medical & Biological Engineering & Computing, 56(1), 125–136.

    Article  Google Scholar 

  20. Jebelli, H., Khalili, M. M., & Lee, S. (2019). Mobile EEG-based workers stress recognition by applying deep neural network. In I. Mutis & T. Hartmann (Eds.), Advances in informatics and computing in civil and construction engineering (pp. 173–180). Cham: Springer.

    Chapter  Google Scholar 

  21. Easycap. Retrieved March 21, 2018, from http://brainvision.co.uk/products/products-by-manufacter/easycap-gmbh.

  22. Brain products. Retrieved March 21, 2018, from https://www.brainproducts.com/.

  23. Bablani, A., Edla, D. R., Tripathi, D., & Kuppili, V. (2019). An efficient concealed information test: EEG feature extraction and ensemble classification for lie identification. Machine Vision and Applications, 30(5), 813–832.

    Article  Google Scholar 

  24. Matlab. Retrieved May 10, 2018, from https://in.mathworks.com/products/matlab.html.

  25. Spyder. Retrieved June 19, 2018, from https://www.spyder-ide.org/.

  26. Ting, W., Guo-zheng, Y., Bang-hua, Y., & Hong, S. (2008). Eeg feature extraction based on wavelet packet decomposition for brain computer interface. Measurement, 41(6), 618–625.

    Article  Google Scholar 

  27. Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 41(7), 909–996.

    Article  MathSciNet  Google Scholar 

  28. MathWorks, 1-d wavelet decomposition. Retrieved May 15, 2018, from http://in.mathworks.com/help/wavelet/ref/wavedec.html.

  29. Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5), 961–1005.

    Article  MathSciNet  Google Scholar 

  30. Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., & Schwaiger, J. (1998). Induced alpha band power changes in the human EEG and attention. Neuroscience Letters, 244(2), 73–76.

    Article  Google Scholar 

  31. Bland, J. M., & Altman, D. G. (1996). Statistics notes: Measurement error. BMJ, 312(7047), 1654.

    Article  Google Scholar 

  32. Hjorth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography and Clinical Neurophysiology, 39(5), 526–530.

    Article  Google Scholar 

  33. Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalography and Clinical Neurophysiology, 29(3), 306–310.

    Article  Google Scholar 

  34. Petrosian, A. (1995). Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In Proceedings eighth IEEE symposium on computer-based medical systems, 1995 (pp. 212–217). IEEE.

  35. Higuchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena, 31(2), 277–283.

    Article  MathSciNet  Google Scholar 

  36. Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc.

  37. Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108.

    MATH  Google Scholar 

  38. Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of cluster in k-means clustering. International Journal, 1(6), 90–95.

    Google Scholar 

  39. Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In European conference on machine learning (pp. 171–182). Springer.

  40. Kira, K., & Rendell, L. A. (1992). The feature selection problem: Traditional methods and a new algorithm. In AAAI (Vol. 2, pp. 129–134).

  41. MathWorks, Rank importance of predictors using relieff or rrelieff algorithm. Retrieved June 25, 2018, from http://in.mathworks.com/help/stats/relieff.html.

  42. Rasmussen, C. E. (2004). Gaussian processes in machine learning. In O. Bousquet, U. von Luxburg, & G. Rätsch (Eds.), Advanced lectures on machine learning (pp. 63–71). Berlin: Springer.

    Chapter  Google Scholar 

  43. Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.

    Article  MathSciNet  Google Scholar 

  44. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

    MathSciNet  MATH  Google Scholar 

  45. Khosrowabadi, R., Quek, C., Ang, K. K., Tung, S. W., & Heijnen, M. (2011). A brain–computer interface for classifying EEG correlates of chronic mental stress. In The 2011 international joint conference on neural networks (pp. 757–762). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damodar Reddy Edla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, R., Porob, P., Rebelo, P. et al. EEG Data Classification for Mental State Analysis Using Wavelet Packet Transform and Gaussian Process Classifier. Wireless Pers Commun 115, 2149–2169 (2020). https://doi.org/10.1007/s11277-020-07675-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07675-7

Keywords

Navigation