Skip to main content

Advertisement

Log in

Spatio-Temporal Distribution, Ecological Risk Assessment, and Multivariate Analysis of Heavy Metals in Bathinda District, Punjab, India

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The pollution of agricultural soil due to heavy metals is a serious environmental problem throughout the world due to their persistence and toxicity. The present study was carried out on agricultural soils of district Bathinda, Punjab where a total of 120 soil samples were collected from 40 different locations during pre-monsoon, monsoon, and post-monsoon season. The total mean concentration of heavy metals (arsenic (As), chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), lead (Pb)) was estimated by ThermoScientific–iCAP Qc (Germany) inductively coupled plasma–mass spectrometry (ICP-MS). The concentration of heavy metals was of the order of Fe > Zn > Cr > Ni > Cu > Co > As > Pb > Hg > Cd, Fe > Zn > Cr > Ni > Cu > Co > As > Pb > Hg > Cd, and Fe > Zn > Cr > Ni > Cu > Co > Pb > As > Hg > Cd in pre-monsoon, monsoon, and post-monsoon seasons, respectively. The metals such as Fe, Zn, Cr, and Ni indicated higher concentrations at most of the sites, whereas Hg and Cd showed lower concentrations throughout the region. The total mean concentrations (mg/kg) of the metals were found to be lower than their natural background concentration values. Based on enrichment factor (EF), the soils were moderately contaminated at most of the sites with a few cases where the soil was minimally enriched with heavy metals. Other pollution indices such pollution load index (PLI) and degree of contamination (Cd) also indicated low to moderate level of soil contamination. Besides, risk assessment of heavy metals was also determined using potential ecological risk factor (Ei) and ecological risk index (Ri) which indicated low Ei and Ri in the region for most of the metals. Spatial distribution using interpolation technique, Inverse Distance Weighted (IDW) in ArcGIS 10.6.1 software, showed a significant spatial and seasonal variability of heavy metals throughout the region. Pearson’s correlation coefficient (r) between heavy metal variables was found to be significant at p < 0.05 significance level (As-Cr (r = 0.769), As-Fe (r = 0.760), As-Co (r = 0.883), As-Ni (r = 0.886), As-Cu (r = 0.859), As-Hg (r = 0.678) in pre-monsoon samples; As-Fe (r = 0.613), As-Co (r = 0.669), As-Ni (r = 0.619), As-Cu (r = 0.639) in monsoon samples and As-Cr (r = 0.631), As-Fe (r = 0.715), As-Co (r = 0.710), As-Cu (r = 0.690) in post-monsoon samples) indicated a strong relationship between different variables. Principal component analysis (PCA) technique also proved to be significant in studying the behavioral pattern of variables, where PCA biplots showed different behavior as revealed from some strong associations. Finally, continuous monitoring of the sites is suggested to avoid further contamination and degradation of soil quality, despite low contamination levels in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abreu, I. M., Cordeiro, R. C., Soares-Gomes, A., Abessa, D. M. S., Maranho, L. A., & Santelli, R. E. (2016). Ecological risk evaluation of sediment metals in a tropical eutrophic bay, Guanabara Bay, Southeast Atlantic. Marine Pollution Bulletin, 109(1), 435–445.

    CAS  Google Scholar 

  • Acosta, J. A., Faz, A., Martínez-Martínez, S., & Arocena, J. M. (2011). Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia City, Southeast Spain). Applied Geochemistry, 26, 405–414.

    CAS  Google Scholar 

  • Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), 1009–1017.

    CAS  Google Scholar 

  • Aelion, C. M., Davis, H. T., Cai, B., Lawson, A. B., & McDermott, S. (2012). Associations of estimated residential soil arsenic and lead concentrations and community-level environmental measures with mother–child health conditions in South Carolina. Health and Place, 18, 774–781.

    Google Scholar 

  • Agarwal, S., Tyagi, I., Gupta, V. K., Dehghani, M. H., Jaafari, J., Balarak, D., & Asif, M. (2016). Rapid removal of noxious nickel (II) using novel γ-alumina nano-particles and multi-walled carbon nanotubes: kinetic and isotherm studies. Journal of Molecular Liquids, 224, 618–623.

    CAS  Google Scholar 

  • Ahmad, N., & Pandey, P. (2018). Assessment and monitoring of land degradation using geospatial technology in Bathinda district, Punjab, India. Solid Earth, 9(1), 75–90.

    Google Scholar 

  • Ahmed, F., Fakhruddin, A. N. M., Imam, M. T., Khan, N., Khan, T. A., Rahman, M. M., & Abdullah, A. T. M. (2016). Spatial distribution and source identification of heavy metal pollution in roadside surface soil: a study of Dhaka Aricha highway, Bangladesh. Ecological Processes, 5(1), 2.

    Google Scholar 

  • Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034–6039.

    CAS  Google Scholar 

  • Armah, F. A., Obiri, S., Yawson, D. O., Pappoe, A. N. M., & Akoto, B. (2010). Mining and heavy metal pollution: assessment of aquatic environments in Tarkwa (Ghana) using multivariate statistical analysis. Journal of Environmental Statistics, 1(4), 1–13.

    Google Scholar 

  • Asghari, F. B., Jaafari, J., Yousefi, M., Mohammadi, A. A., & Dehghanzadeh, R. (2018). Evaluation of water corrosion, scaling extent and heterotrophic plate count bacteria in asbestos and polyethylene pipes in drinking water distribution system. Human and Ecological Risk Assessment: An International Journal, 24(4), 1138–1149.

    CAS  Google Scholar 

  • Bhagure, G. R., & Mirgane, S. R. (2011). Heavy metal concentrations in ground waters and soils of thane region of Maharashtra, India. Environmental Monitoring and Assessment, 173(1–4), 643–652.

    CAS  Google Scholar 

  • Bhutiani, R., Kulkarni, D. B., Khanna, D. R., & Gautam, A. (2017). Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Haridwar, India. Energy, Ecology and Environment, 2(2), 155–167.

    Google Scholar 

  • Bolan, N. S., Makino, T., Kunhikrishnan, A., Kim, P. J., Ishikawa, S., Murakami, M., et al. (2013). Cadmium contamination and its risk management in rice ecosystems. Advances in Agronomy, 119, 183–273.

    CAS  Google Scholar 

  • Buat-Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42(3), 399–411.

    CAS  Google Scholar 

  • Burak, D. L., Fontes, M. P., Santos, N. T., Monteiro, L. V. S., de Sousa Martins, E., & Becquer, T. (2010). Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian central plateau. Geoderma, 160(2), 131–142.

    CAS  Google Scholar 

  • Cai, L., Xu, Z., Ren, M., Guo, Q., Hu, X., Hu, G., Wan, H., & Peng, P. (2012). Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicology and Environmental Safety, 78, 2–8.

    CAS  Google Scholar 

  • Cao, X., Wahbi, A., Ma, L., Li, B., & Yang, Y. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 164(2–3), 555–564.

    CAS  Google Scholar 

  • Cerdà, A., Rodrigo-Comino, J., Giménez-Morera, A., & Keesstra, S. D. (2017). An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. Ecological Engineering, 108, 162–171.

    Google Scholar 

  • Chakravarty, M., & Patgiri, A. D. (2009). Metal pollution assessment in sediments of the Dikrong River, NE India. Journal of Human Ecology, 27(1), 63–67.

    Google Scholar 

  • Chavre, B. (2017). Soil pollution and remediation methods. International Journal of Current Research, 9(10), 1–5.

    CAS  Google Scholar 

  • Cheng, W., Zhang, X., Wang, K., & Dai, X. (2009). Integrating classification and regression tree (CART) with GIS for assessment of heavy metals pollution. Environmental Monitoring and Assessment, 158(1–4), 419.

    CAS  Google Scholar 

  • Dantu, S. (2009). Heavy metals concentration in soils of southeastern part of Ranga Reddy district, Andhra Pradesh, India. Environmental Monitoring and Assessment, 149(1), 213–222.

    CAS  Google Scholar 

  • Dayani, M., & Mohammadi, J. (2010). Geostatistical assessment of Pb, Zn and Cd contamination in near-surface soils of the urban-mining transitional region of Isfahan, Iran. Pedosphere, 20(5), 568–577.

    CAS  Google Scholar 

  • de Caritat, P., Main, P. T., Grunsky, E. C., & Mann, A. W. (2017). Recognition of geochemical footprints of mineral systems in the regolith at regional to continental scales. Australian Journal of Earth Sciences, 64(8), 1033–1043.

    Google Scholar 

  • De Miguel, E., De Grado, M. J., Llamas, J. F., Martın-Dorado, A., & Mazadiego, L. F. (1998). The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Science of the Total Environment, 215(1–2), 113–122.

    Google Scholar 

  • Dexter, A. R. (2004). Soil physical quality. Part I: theory, effects of soil texture, density and organic matter and effects on root growth. Geoderma, 120(3–4), 201–214.

    Google Scholar 

  • Dogra, N., Sharma, M., Sharma, A., Keshavarzi, A., Minakshi, Bhardwaj, R., et al. (2019). Pollution assessment and spatial distribution of roadside agricultural soils: a case study from India. International Journal of Environmental Health Research, 30(2), 1–14.

    Google Scholar 

  • Dominati, E., Patterson, M., & Mackay, A. (2010). A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics, 69(9), 1858–1868.

    Google Scholar 

  • Du, H., Harata, N., & Li, F. (2018). Responses of riverbed sediment bacteria to heavy metals: integrated evaluation based on bacterial density, activity and community structure under well-controlled sequencing batch incubation conditions. Water Research, 130, 115–126.

    CAS  Google Scholar 

  • Duressa, T. F., & Leta, S. (2015). Determination of levels of As, Cd, Cr, Hg and Pb in soils and some vegetables taken from River Mojo water irrigated farmland at Koka Village, Oromia state, East Ethiopia. International Journal of Sciences: Basic and Applied Research, 21(2), 352–372.

    Google Scholar 

  • EPA (1996). Method 3050B. Acid digestion of sediments, sludges, and soils. Revision 2. Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods, EPA SW-846 Section A, pp. 3050B-1e3050B.

  • Erel, Y., & Morgan, J. J. (1992). The relationships between rock-derived lead and iron in natural waters. Geochimica et Cosmochimica Acta, 56(12), 4157–4167.

    CAS  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324.

    CAS  Google Scholar 

  • Gong, M., Wu, L., Bi, X. Y., Ren, L. M., Wang, L., Ma, Z. D., et al. (2010). Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban–rural topsoils in Wuhan, Central China. Environmental Geochemistry and Health, 32(1), 59–72.

    CAS  Google Scholar 

  • Govil, P., Reddy, G., & Krishna, A. (2001). Contamination of soil due to heavy metals in the Patancheru industrial development area, Andhra Pradesh, India. Environmental Geology, 41(3), 461–469.

    CAS  Google Scholar 

  • Guo, W., Liu, X., Liu, Z., & Li, G. (2010). Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia Environmental Sciences, 2, 729–736.

    Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Google Scholar 

  • Harte, J., Holdren, C., Schneider, R., & Shirley, C. (1991). Toxics A to Z: A guide to everyday pollution hazards. University of California Press.

  • He, Z., Shentu, J., Yang, X., Baligar, V. C., Zhang, T., & Stoffella, P. J. (2015). Heavy metal contamination of soils: sources, indicators and assessment. Journal of Environmental Indicators, 9, 17–18.

    Google Scholar 

  • Herojeet, R., Rishi, M. S., Lata, R., & Sharma, R. (2016). Application of environmetrics statistical models and water quality index for groundwater quality characterization of alluvial aquifer of Nalagarh Valley, Himachal Pradesh, India. Sustainable Water Resources Management, 2(1), 39–53.

    Google Scholar 

  • Huang, R., Huang, D., Dai, W., & Yang, F. (2015a). Overexpression of HMGA1 correlates with the malignant status and prognosis of breast cancer. Molecular and Cellular Biochemistry, 404(1–2), 251–257.

    CAS  Google Scholar 

  • Huang, Y., Li, T., Wu, C., He, Z., Japenga, J., et al. (2015b). An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. Journal of Hazardous Materials, 299, 540–549.

    CAS  Google Scholar 

  • Huang, R., Wang, K., & Hu, J. (2016). Effect of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials. Nutrients, 8(8), 483.

    Google Scholar 

  • Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X., & He, Z. (2018). Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in Southeast China. Journal of Environmental Management, 207, 159–168.

    CAS  Google Scholar 

  • Hussain, J., Husain, I., Arif, M., & Gupta, N. (2017). Studies on heavy metal contamination in Godavari river basin. Applied Water Science, 7(8), 4539–4548.

  • Ielpo, P., Leardi, R., Pappagallo, G., & Uricchio, V. F. (2017). Tools based on multivariate statistical analysis for classification of soil and groundwater in Apulian agricultural sites. Environmental Science and Pollution Research, 24(16), 13967–13978.

    CAS  Google Scholar 

  • Jean-Philippe, S. R., Labbe, N., Franklin, J. A., & Johnson, A. (2012). Detection of mercury and other metals in mercury contaminated soils using mid-infrared spectroscopy. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(3), 139–149.

    CAS  Google Scholar 

  • Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., & Cao, H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, 1658–1668.

    CAS  Google Scholar 

  • Jiao, W., Chen, W., Chang, A. C., & Page, A. L. (2012). Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environmental Pollution, 168, 44–53.

    CAS  Google Scholar 

  • Jiao, X., Teng, Y., Zhan, Y., Wu, J., & Lin, X. (2015). Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China. PLoS One, 10(5), e0127736.

    Google Scholar 

  • Kabata-Pendias, A. (2000). Trace elements in soils and plants. Boca Raton: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781420039900.

    Book  Google Scholar 

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). New York, Washington D.C.: CRC Press LLC.

    Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer. https://doi.org/10.1007/978-3-540-32714-1.

    Book  Google Scholar 

  • Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment, 610, 997–1009.

    Google Scholar 

  • Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: insights from Argolida basin, Peloponnese, Greece. Geoderma, 221, 82–90.

    Google Scholar 

  • Keshavarzi, A., & Kumar, V. (2019). Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of northeastern Iran. Geology, Ecology, and Landscapes, 1–17.

  • Khorshid, M. S. H., & Thiele-Bruhn, S. (2016). Contamination status and assessment of urban and non-urban soils in the region of Sulaimani City, Kurdistan, Iraq. Environmental Earth Sciences, 75(16), 1171.

    Google Scholar 

  • King, C. M. D., Dozier, C. S., Campbell, J. L., Curry, E. D., & Pollitt, K. J. G. (2019). Long-term leaching of arsenic from pressure-treated playground structures in the northeastern United States. Science of the Total Environment, 656, 834–842.

    Google Scholar 

  • Kolawole, T. O., Olatunji, A. S., Jimoh, M. T., & Fajemila, O. T. (2018). Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in southwestern Nigeria. Journal of Health and Pollution, 8(19), 180906.

    Google Scholar 

  • Kord Mostafapour, F., Jaafari, J., Gharibi, H., Sepand, M. R., Hoseini, M., et al. (2018). Characterizing of fine particulate matter (PM1) on the platforms and outdoor areas of underground and surface subway stations. Human and Ecological Risk Assessment: An International Journal, 24(4), 1016–1029.

    CAS  Google Scholar 

  • Koshal, A. K. (2012). Satellite image analysis of salinity areas through GPS, remote sensing and GIS. In: 14th annual international conference and exhibition on geospatial technology and applications, India Geospatial Forum.

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—a review. Environmental Geochemistry and Health, 40(6), 2395–2420.

    CAS  Google Scholar 

  • Krishan, G., Rao, R. S. M., Gupta, S., & Tiwari, P. K. (2015). Fluoride, iron and nitrate affected areas of Punjab. Suresh Gyan Vihar University Journal of Climate Change and Water, 1(1), 1–5.

    Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2005). Heavy metal distribution and contamination in soils of Thane–Belapur industrial development area, Mumbai, Western India. Environmental Geology, 47(8), 1054–1061.

    CAS  Google Scholar 

  • Krishna, A. K., Mohan, K. R., Murthy, N. N., Periasamy, V., Bipinkumar, G., Manohar, K., & Rao, S. S. (2013). Assessment of heavy metal contamination in soils around chromite mining areas, Nuggihalli, Karnataka, India. Environmental Earth Sciences, 70(2), 699–708.

    CAS  Google Scholar 

  • Kumar, R., Sharma, B. D., Singh, P. S., & Brar, J. S. (2005). Characteristics, classification and management of arid soils of Punjab. Journal of Indian Society of Soil Science, 53, 21–28.

    Google Scholar 

  • Kumar, R., Kumar, R., Mittal, S., Arora, M., & Babu, J. N. (2016). Role of soil physico-chemical characteristics on the present state of arsenic and its adsorption in alluvial soils of two agri-intensive regions of Bathinda, Punjab, India. Journal of Soils and Sediments, 16(2), 605–620.

    CAS  Google Scholar 

  • Kumar, V., Sharma, A., Minakshi, Bhardwaj, R., & Thukral, A. K. (2018). Temporal distribution, source apportionment, and pollution assessment of metals in the sediments of Beas river, India. Human and Ecological Risk Assessment: An International Journal, 24(8), 2162–2181.

    CAS  Google Scholar 

  • Kwon, M. J., Lee, J. Y., Hwang, Y. H., Jeon, S. K., Yang, J. S., Yun, S. T., & Lee, S. (2017). Spatial distribution, mineralogy, and weathering of heavy metals in soils along zinc-concentrate ground transportation routes: implication for assessing heavy metal sources. Environmental Earth Sciences, 76(23), 802.

    Google Scholar 

  • Lacatusu, R. (2000). Appraising levels of soil contamination and pollution with heavy metals. European Soil Bureau, 4, 93–102.

    Google Scholar 

  • Ladwani, K. D., Ladwani, K. D., Manik, V. S., & Ramteke, D. S. (2012). Assessment of heavy metal contaminated soil near coal mining area in Gujarat by toxicity characteristics leaching procedure. International Journal of Life Sciences Biotechnology and Pharma Research, 1(4), 73–80.

    CAS  Google Scholar 

  • Lancianese, V., & Dinelli, E. (2015). Different spatial methods in regional geochemical mapping at high density sampling: an application on stream sediment of Romagna Apennines, northern Italy. Journal of Geochemical Exploration, 154, 143–155.

    CAS  Google Scholar 

  • Li, H., Qian, X., Hu, W., Wang, Y., & Gao, H. (2013). Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Science of the Total Environment, 456, 212–221.

    Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Google Scholar 

  • Likuku, A. S., Mmolawa, K. B., & Gaboutloeloe, G. K. (2013). Assessment of heavy metal enrichment and degree of contamination around the copper–nickel mine in the Selebi Phikwe region, eastern Botswana. Environment and Ecology Research, 1(2), 15–17.

    Google Scholar 

  • Lin, Y., Han, P., Huang, Y., Yuan, G. L., Guo, J. X., & Li, J. (2017). Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing, China: multivariate statistical analysis and redundancy analysis. Journal of Geochemical Exploration, 173, 110–118.

    CAS  Google Scholar 

  • Liu, M., Yang, Y., Yun, X., Zhang, M., & Wang, J. (2015). Concentrations, distribution, sources, and ecological risk assessment of heavy metals in agricultural topsoil of the three gorges dam region, China. Environmental Monitoring and Assessment, 187(3), 147.

    Google Scholar 

  • Loska, K., Wiechuła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30(2), 159–165.

    CAS  Google Scholar 

  • Lv, J., Liu, Y., Zhang, Z., Dai, J., Dai, B., & Zhu, Y. (2015). Identifying the origins and spatial distributions of heavy metals in soils of Ju country (eastern China) using multivariate and geostatistical approach. Journal of Soils and Sediments, 15(1), 163–178.

    CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31.

    CAS  Google Scholar 

  • Machender, G., Dhakate, R., Prasanna, L., & Govil, P. K. (2011). Assessment of heavy metal contamination in soils around Balanagar industrial area, Hyderabad, India. Environmental Earth Sciences, 63(5), 945–953.

    CAS  Google Scholar 

  • Marg, B. Z. (2011). Hazardous metals and minerals pollution in India: sources, toxicity and management. A position paper. New Delhi: Indian National Science Academy.

    Google Scholar 

  • McComb, J. Q., Rogers, C., Han, F. X., & Tchounwou, P. B. (2014). Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, a comparative study. Water, Air, & Soil Pollution, 225(12), 2169.

    Google Scholar 

  • Mehrabi, B., Mehrabani, S., Rafiei, B., & Yaghoubi, B. (2015). Assessment of metal contamination in groundwater and soils in the Ahangaran mining district, west of Iran. Environmental Monitoring and Assessment, 187(12), 727.

    Google Scholar 

  • Mohammadi, A., Hajizadeh, Y., Taghipour, H., Mosleh Arani, A., Mokhtari, M., & Fallahzadeh, H. (2018). Assessment of metals in agricultural soil of surrounding areas of Urmia Lake, Northwest Iran: a preliminary ecological risk assessment and source identification. Human and Ecological Risk Assessment: An International Journal, 24(8), 2070–2087.

    CAS  Google Scholar 

  • Mohseni-Bandpei, A., Ashrafi, S. D., Kamani, H., & Paseban, A. (2017). Contamination and ecological risk assessment of heavy metals in surface soils of Esfarayen City, Iran. Health Scope, 6(2), e39703.

    Google Scholar 

  • Moore, F., Sheykhi, V., Salari, M., & Bagheri, A. (2016). Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran. Environmental Monitoring and Assessment, 188(4), 214.

    Google Scholar 

  • Morillas, H., Gredilla, A., Carrero, J. A., Huallparimachi, G., Gallego-Cartagena, E., Maguregui, M., et al. (2020). Impact assessment of metals on soils from Machu Picchu archaeological site. Chemosphere, 242, 125249.

    CAS  Google Scholar 

  • Morrissey, J., & Guerinot, M. L. (2009). Iron uptake and transport in plants: the good, the bad, and the ionome. Chemical Reviews, 109(10), 4553–4567.

  • Naghipour, D., Gharibi, H., Taghavi, K., & Jaafari, J. (2016a). Influence of EDTA and NTA on heavy metal extraction from sandy-loam contaminated soils. Journal of Environmental Chemical Engineering, 4(3), 3512–3518.

    CAS  Google Scholar 

  • Naghipour, D., Taghavi, K., Jaafari, J., Mahdavi, Y., Ghanbari Ghozikali, M., et al. (2016b). Statistical modeling and optimization of the phosphorus biosorption by modified Lemna minor from aqueous solution using response surface methodology (RSM). Desalination and Water Treatment, 57(41), 19431–19442.

    CAS  Google Scholar 

  • Navas, A., & Machı́n, J. (2002). Spatial distribution of heavy metals and arsenic in soils of Aragon (Northeast Spain): controlling factors and environmental implications. Applied Geochemistry, 17(8), 961–973.

    CAS  Google Scholar 

  • Nedelescu, M., Baconi, D., Neagoe, A., Iordache, V., Stan, M., et al. (2017). Environmental metal contamination and health impact assessment in two industrial regions of Romania. Science of the Total Environment, 580, 984–995.

    CAS  Google Scholar 

  • Nirola, R., Megharaj, M., Subramanian, A., Thavamani, P., Ramadass, K., Aryal, R., & Saint, C. (2018). Analysis of chromium status in the revegetated flora of a tannery waste site and microcosm studies using earthworm E. fetida. Environmental Science and Pollution Research, 25(6), 5063–5070.

    CAS  Google Scholar 

  • Niu, L., Yang, F., Xu, C., Yang, H., & Liu, W. (2013). Status of metal accumulation in farmland soils across China: from distribution to risk assessment. Environmental Pollution, 176, 55–62.

    CAS  Google Scholar 

  • Nobi, E. P., Dilipan, E., Thangaradjou, T., Sivakumar, K., & Kannan, L. (2010). Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, Coastal and Shelf Science, 87(2), 253–264.

    CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    CAS  Google Scholar 

  • Pan, L., Ma, J., Hu, Y., Su, B., Fang, G., Wang, Y., et al. (2016). Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China. Environmental Science and Pollution Research, 23(19), 19330–19340.

    CAS  Google Scholar 

  • Paulette, L., Man, T., Weindorf, D. C., & Person, T. (2015). Rapid assessment of soil and contaminant variability via portable x-ray fluorescence spectroscopy: Copşa Mică, Romania. Geoderma, 243, 130–140.

    Google Scholar 

  • Pekey, H. (2006). The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin, 52(10), 1197–1208.

    CAS  Google Scholar 

  • Pekey, H., Karakaş, D., Ayberk, S., Tolun, L., & Bakoǧlu, M. (2004). Ecological risk assessment using trace elements from surface sediments of Izmit Bay (northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48(9–10), 946–953.

    CAS  Google Scholar 

  • Peris, M., Recatalá, L., Micó, C., Sánchez, R., & Sánchez, J. (2008). Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean region. Water, Air and Soil Pollution, 192, 25–37.

    CAS  Google Scholar 

  • Pobi, K. K., Satpati, S., Dutta, S., Nayek, S., Saha, R. N., & Gupta, S. (2019). Sources evaluation and ecological risk assessment of heavy metals accumulated within a natural stream of Durgapur industrial zone, India, by using multivariate analysis and pollution indices. Applied Water Science, 9(3), 58.

    Google Scholar 

  • Prajapati, S. K. (2014). Heavy metal speciation of soil and Calotropis procera from thermal power plant area. Proceedings of the International Academy of Ecology and Environmental Sciences, 4(2), 68–71.

    Google Scholar 

  • Rabee, A. M., Al-Fatlawy, Y. F., & Nameer, M. (2011). Using pollution load index (PLI) and geoaccumulation index (Igeo) for the assessment of heavy metals pollution in Tigris river sediment in Baghdad region. Al-Nahrain Journal of Science, 14(4), 108–114.

    Google Scholar 

  • Reimann, C., & de Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337(1–3), 91–107.

    CAS  Google Scholar 

  • Reimann, C., & de Caritat, P. (2017). Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment, 578, 633–648.

    CAS  Google Scholar 

  • Romic, M., & Romic, D. (2003). Heavy metal distribution in agricultural topsoils in urban area. Environmental Geology, 43, 795–805.

    CAS  Google Scholar 

  • Sahoo, P. K., Guimarães, J. T. F., Souza-Filho, P. W. M., Powell, M. A., da Silva, M. S., Moraes, A. M., et al. (2019). Statistical analysis of lake sediment geochemical data for understanding surface geological factors and processes: an example from Amazonian upland lakes, Brazil. Catena, 175, 47–62.

    CAS  Google Scholar 

  • Sakram, G., Machender, G., Dhakate, R., Saxena, P. R., & Prasad, M. D. (2015). Assessment of trace elements in soils around Zaheerabad town, Medak district, Andhra Pradesh, India. Environmental Earth Sciences, 73(8), 4511–4524.

    CAS  Google Scholar 

  • Salomão, G. N., Dall'Agnol, R., Sahoo, P. K., Júnior, J. D. S. F., da Silva, M. S., Sousa Filho, P. W. M. E., et al. (2019). Geochemical distribution and threshold values determination of heavy metals in stream water in the sub-basins of Vermelho and Sororó rivers, Itacaiúnas River watershed, eastern Amazon, Brazil. Geochimica Brasiliensis, 32(2), 180–198.

    Google Scholar 

  • Schoenholtz, S. H., Van Miegroet, H., & Burger, J. A. (2000). A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecology and Management, 138(1–3), 335–356.

    Google Scholar 

  • Selvaraj, K., Mohan, V. R., & Szefer, P. (2004). Evaluation of metal contamination in coastal sediments of the bay of Bengal, India: geochemical and statistical approaches. Marine Pollution Bulletin, 49(3), 174–185.

    CAS  Google Scholar 

  • Sharma, B. D., Sidhu, P. S., & Nayyar, V. K. (1992). Distribution of micronutrients in arid zone soils of Punjab and their relation with soil properties. Arid Land Research and Management, 6(3), 233–242.

    CAS  Google Scholar 

  • Sidhu, G. P. S. (2016). Heavy metal toxicity in soils: sources, remediation technologies and challenges. Advances in Plants & Agriculture Research, 5(1), 1–2.

    Google Scholar 

  • Sidhu, P. S., & Sharma, B. D. (1990). Characteristics and classification of arid zone soils of Punjab, India. Arid Land Research and Management, 4(4), 223–232.

    Google Scholar 

  • Sidhu, G. P. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2017). Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils. Chemosphere, 182, 129–136.

    CAS  Google Scholar 

  • Smith, C. A. (1981). Soil in the corrosion process: a review of the role of soil conditions on the corrosion of underground pipes. Anticorrosion Methods and Materials, 28(2), 4–8.

    Google Scholar 

  • Song, T., Su, X., He, J., Liang, Y., & Zhou, T. (2018). Source apportionment and health risk assessment of heavy metals in agricultural soils in Xinglonggang, northeastern China. Human and Ecological Risk Assessment: An International Journal, 24(2), 509–521.

    CAS  Google Scholar 

  • Stafilov, T., Šajn, R., Boev, B., Cvetković, J., Mukaetov, D., Andreevski, M., & Lepitkova, S. (2010). Distribution of some elements in surface soil over the Kavadarci region, republic of Macedonia. Environmental Earth Sciences, 61(7), 1515–1530.

    CAS  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627.

    CAS  Google Scholar 

  • Swarnalatha, K., Letha, J., & Ayoob, S. (2013). Ecological risk assessment of a tropical lake system. Journal of Urban and Environmental Engineering, 7(2), 323–329.

    Google Scholar 

  • Tian, K., Huang, B., Xing, Z., & Hu, W. (2017). Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecological Indicators, 72, 510–520.

    CAS  Google Scholar 

  • Tianlik, T., Norulaini, N., Shahadat, M., Yoonsing, W., & Omar, A. (2016). Risk assessment of metal contamination in soil and groundwater in Asia: a review of recent trends as well as existing environmental laws and regulations. Pedosphere, 26(4), 431–450.

    Google Scholar 

  • Tippie, V. K. (1984). An environmental characterization of Chesapeake Bay and a framework for action. In: The estuary as a filter (pp. 467–487). Academic Press. https://doi.org/10.1016/B978-0-12-405070-9.50028-1.

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1), 566–575.

    Google Scholar 

  • Waldron, H. A. (1980). Metals in the environment. Academic Press Inc (London) Ltd, 24/28 Oval Road, London NW1 7DX.

  • Walker, T. R. (1967). Color of recent sediments in tropical Mexico: a contribution to the origin of red beds. Geological Society of America Bulletin, 78(7), 917–920.

    Google Scholar 

  • Wang, Y., Yang, L., Kong, L., Liu, E., Wang, L., & Zhu, J. (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena, 125, 200–205.

    CAS  Google Scholar 

  • Wang, Z., Hong, C., Xing, Y., Wang, K., Li, Y., Feng, L., & Ma, S. (2018). Spatial distribution and sources of heavy metals in natural pasture soil around copper–molybdenum mine in Northeast China. Ecotoxicology and Environmental Safety, 154, 329–336.

    CAS  Google Scholar 

  • Watts, N. L. (1980). Quaternary pedogenic calcretes from the Kalahari (southern Africa): mineralogy, genesis and diagenesis. Sedimentology, 27(6), 661–686.

    Google Scholar 

  • Williams, C. H., & David, D. J. (1973). The effect of superphosphate on the cadmium content of soils and plants. Soil Research, 11(1), 43–56.

    CAS  Google Scholar 

  • Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., et al. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78.

    CAS  Google Scholar 

  • Xie, X., Wang, X., Zhang, Q., Zhou, G., Cheng, H., Liu, D., et al. (2008). Multi-scale geochemical mapping in China. Geochemistry: Exploration, Environment, Analysis, 8(3–4), 333–341.

    CAS  Google Scholar 

  • Xiong, S., Sun, J., Yan, X., & Xu, Y. (2016). Inhibition effect of azole derivate on corrosion activity of copper in rolling oil. Surface and Interface Analysis, 48(2), 88–98.

    CAS  Google Scholar 

  • Yang, Y., Zhengchao, Z., Yanying, B., Yimin, C., & Weiping, C. (2016). Risk assessment of heavy metal pollution in sediments of the Fenghe River by the fuzzy synthetic evaluation model and multivariate statistical methods. Pedosphere, 26(3), 326–334.

    Google Scholar 

  • Yaylali-Abanuz, G. (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 99(1), 82–92.

    CAS  Google Scholar 

  • Yousefi, M., Saleh, H. N., Mohammadi, A. A., Mahvi, A. H., Ghadrpoori, M., et al. (2017). Data on water quality index for the groundwater in rural area Neyshabur County, Razavi province, Iran. Data in Brief, 15, 901–907.

    Google Scholar 

  • Youssef, R. A., & Chino, M. (1991). Movement of metals from soil to plant roots. Water, Air & Soil Pollution, 57(1), 249–258.

    Google Scholar 

  • Zahran, M., El-Amier, Y. A., Elnaggar, A. A., Mohamed, H., & El-Alfy, M. (2015). Assessment and distribution of heavy metals pollutants in Manzala Lake, Egypt. Journal of Geoscience and Environment Protection, 3(06), 107.

    Google Scholar 

  • Zenawi, G., & Mizan, A. (2019). Effect of nitrogen fertilization on the growth and seed yield of sesame (Sesamum indicum L.). International Journal of Agronomy, 2019, 1–8.

    Google Scholar 

  • Zhang, W., Feng, H., Chang, J., Qu, J., Xie, H., & Yu, L. (2009). Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environmental Pollution, 157(5), 1533–1543.

    CAS  Google Scholar 

  • Zhou, X., & Xia, B. (2010). Defining and modeling the soil geochemical background of heavy metals from the Hengshi River watershed (southern China): integrating EDA, stochastic simulation and magnetic parameters. Journal of Hazardous Materials, 180(1–3), 542–551.

    CAS  Google Scholar 

  • Zhu, L., Xu, J., Wang, F., & Lee, B. (2011). An assessment of selected heavy metal contamination in the surface sediments from the South China Sea before 1998. Journal of Geochemical Exploration, 108(1), 1–14.

    CAS  Google Scholar 

  • Zuo, R., Cheng, Q., Agterberg, F. P., & Xia, Q. (2009). Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration, 101(3), 225–235.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to the Central Instrumentation Laboratory (CIL) facility of Central University of Punjab for providing support and facilities in analysis of the soil samples. Spatial distribution maps were prepared in RS-GIS Laboratory of the Department of Environmental Science and Technology.

Funding

For research purpose, the authors did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

N.A. (first author) has done all the experiment and research work for the preparation of manuscript while P.P. (second author) has supervised the work and manuscript throughout the research period.

Corresponding author

Correspondence to Puneeta Pandey.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, N., Pandey, P. Spatio-Temporal Distribution, Ecological Risk Assessment, and Multivariate Analysis of Heavy Metals in Bathinda District, Punjab, India. Water Air Soil Pollut 231, 431 (2020). https://doi.org/10.1007/s11270-020-04767-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04767-9

Keywords

Navigation