Skip to main content
Log in

Cyclic Oxidation of Fe–18Cr–21Mn–0.65N Austenitic Stainless Steel at 400–700 °C

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Low nickel, nitrogen stabilized austenitic stainless steel has not been explored for its application in the temperature range of 400–700 °C. In the present investigation, nitrogen stabilized austenitic stainless steel (Fe–18Cr–21Mn–0.65 N) was oxidized cyclically from 400 to 700 °C up to 100 h. The effect of moist airflow on oxidation behavior from 400 to 700 °C was systematically studied gravimetrically and the oxidized surfaces were characterized using SEM(EDS) and XRD. Mn diffused from the matrix to surface and reacted with the oxygen associated with the passive chromia layer and formed non-protective Mn2O3 and spinels of the oxides of Fe, Cr and Mn. At 700 °C, there was rapid vaporization of Cr and consequent reduction in weight gain in dynamic air as compared with that in static air. Precipitation of Cr2N of different morphology was established through TEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Simmons J W, Mater Sci Eng A 207 (1996) 159.

    Article  Google Scholar 

  2. Vats V, Baskaran T and Arya S B, Tribol Int 119 (2018) 659.

    Article  CAS  Google Scholar 

  3. Şahin S, and Übeyli M, J Fusion Energy 27 (2008) 271.

    Article  Google Scholar 

  4. Douglass DL, and Rizzo-Assuncao F, Oxid Metals 29 (1988) 271.

    Article  CAS  Google Scholar 

  5. Mohammed R, Madhusudhan Reddy G, and Srinivasa Rao K, Defence Technol 13 (2017) 59.

    Article  Google Scholar 

  6. Gauzzi F, and S Missori, J Mater Sci 23 (1988) 782.

    Article  CAS  Google Scholar 

  7. Panchal V D World Pumps 2013 (2013) 28–32.

    Article  Google Scholar 

  8. Rawers J, Oxid Met 74 (2010) 167.

    Article  CAS  Google Scholar 

  9. Stanislowski M, Wessel E, Hilpert K, Markus T, and Singheiser L, J Electrochem Soc 154 (2007) A295.

    Article  CAS  Google Scholar 

  10. Huczkowski P, Lehnert W, Angermanns H H, Chyrkin A, Pillai R, Grüner D, Hejrani E, and Quadakkers W J, Mater Corros 68 (2017) 159.

    Article  CAS  Google Scholar 

  11. Kartik B, Veerababu R, Sundararaman M, and Satyanarayana D V V, Mater Sci Eng A 642 (2015) 288.

    Article  CAS  Google Scholar 

  12. Mohammadzadeh R, Akbari A, Grumsen F B, and Somers M A J, Philos Mag 97 (2017) 2795.

    Article  CAS  Google Scholar 

  13. Lee T-H, Kim S-J, and Jung Y-C, Metall Mater Trans A 31 (2000) 1713.

    Article  Google Scholar 

  14. Kumar S, Satapathy B, Pradhan D, and Mahobia G S, Mater Res Expr 6 (2019) 086549.

    Article  CAS  Google Scholar 

  15. Pérez F J, Cristóbal M J, and Hierro M P, Oxid Met 55 (2001) 165.

    Article  Google Scholar 

  16. Grewal H S, Sanjiv R M, Arora H S, Kumar R, Ayyagari A, Mukherjee S, and Singh H, Adv Eng Mater 19 (2017) 1700182.

    Article  Google Scholar 

  17. Ampornrat P, and Was G S, J Nucl Mater 371 (2007) 1.

    Article  CAS  Google Scholar 

  18. Grundy A N, Hallstedt B, and Gauckler L J, J Phase Equilib 24 (2003) 21.

    CAS  Google Scholar 

  19. Kubaschewski O, Evans A L, and Alcock C B (1967) Metallurgical thermochemistry, 4th edn. Oxford Pergamon. https://scholar.google.com/scholar?cluster=12400603039770389736&hl=en&as_sdt=0,5

  20. Perez F J, Cristobal M J, Arnau G, Hierro M P, and Saura J J, Oxid Met 55 (2001) 105.

    Article  CAS  Google Scholar 

  21. Stott F H, Wei F I, and Enahoro C A, Mater Corros 40 (1989) 198.

    Article  CAS  Google Scholar 

  22. Chen S, and Rong L, Oxid Met 89 (2018) 415.

    Article  CAS  Google Scholar 

  23. Lobnig R E, Schmidt H P, Hennesen K, and Grabke H J, Oxid Met 37 (1992) 81.

    Article  CAS  Google Scholar 

  24. Asteman H, Svensson J-E, and Johansson L-G, Oxid Metals 57 (2002) 193.

    Article  CAS  Google Scholar 

  25. Segerdahl K, Svensson J-E, and Johansson L-G, Mater Corros 53 (2002) 247.

    Article  CAS  Google Scholar 

  26. Asteman H, Svensson J-E, and Johansson L-G, Corros Sci 44 (2002) 2635.

    Article  CAS  Google Scholar 

  27. Sabioni A C S, Huntz A M, Borges L C, and Jomard F, Philos Mag 87 (2007) 1921.

    Article  CAS  Google Scholar 

  28. Sabioni A C S, Huntz A M, da Silva F, and Jomard F, Mater Sci Eng A 392 254.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Vakil Singh and Mr. Ankit Singh, Department of Metallurgical Engineering, IIT (BHU), Varanasi, for their support and encouragement. The author would also like to thank M/s JSL-Hissar for supplying the project material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharvan Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Mahobia, G.S. Cyclic Oxidation of Fe–18Cr–21Mn–0.65N Austenitic Stainless Steel at 400–700 °C. Trans Indian Inst Met 73, 2457–2470 (2020). https://doi.org/10.1007/s12666-020-02050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02050-3

Keywords

Navigation