Skip to main content
Log in

Car-following model considering the lane-changing prevention effect and its stability analysis

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The car-following behavior has attracted much attention in past decades. However, the majority of the existing studies ignored the fact that the following vehicle in car-following may prevent the lane-changing of the vehicle on the adjacent lanes, when a large gap exists between the following and leading vehicles. Therefore, this paper proposes a new car-following model considering the lane-changing prevention effect. The final velocity of the following vehicle is a combination of a safe velocity and a lane-changing prevention velocity. The stability condition of the model is derived and verified through numerical simulation, and impacts of several factors on stability are analyzed. The results display that the stability condition is consistent with the simulation results. The most significant factors impacting on the stability are the safe time-headway for lane-changing and the contribution proportion α of the safe velocity and lane-changing prevention velocity. The optimal values exist for the proportion α and lane-changing time headway that can make the stability of the traffic flow the highest.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.A. Pipes, J. Appl. Phys. 24, 274 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  2. L. Guo, et al., Physica A 471, 436 (2017)

    Article  ADS  Google Scholar 

  3. H. Kuang, et al., Nonlinear Dyn. 87, 149 (2017)

    Article  Google Scholar 

  4. J. Leng, et al., J. Harbin Inst. Technol. 24, 91 (2017)

    Google Scholar 

  5. M.P.A. Moghadam, P. Pahlavani, B. Bigdeli, Int. J. Civil Eng. 15, 1159 (2017)

    Article  Google Scholar 

  6. T. Tang, et al., Acta Mech. Sinica 23, 49 (2007)

    Article  ADS  Google Scholar 

  7. Y. Zheng, R. Cheng, H. Ge, Phys. Lett. A 381, 2137 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. X. Li, et al., PLoS ONE 13, e0200110 (2018)

    Article  Google Scholar 

  9. S. Yu, et al., Physica A 531, 121789 (2019)

    Article  MathSciNet  Google Scholar 

  10. FHWA, https://cms8.fhwa.dot.gov

  11. D. Yang, et al., IEEE Trans. Intell. Transport. Syst. 17, 2984 (2016)

    Article  Google Scholar 

  12. D.C. Gazis, R. Herman, R.W. Rothery, Operat. Res. 9, 545 (1961)

    Article  Google Scholar 

  13. E. Kometani, T. Sasaki, inProceedings of the Symposium on Theory of Traffic Flow, 105 (1959)

  14. P.G. Gipps, Transport. Res. B 15, 105 (1981)

    Article  Google Scholar 

  15. R. Michaels, inProceedings of the 2nd International Symposium on the Theory of Road Traffic Flow, London, England, 1963

  16. S. Kikuchi, P. Chakroborty, Transport. Res. Record 1365, 82 (1992)

    Google Scholar 

  17. R.E. Chandler, R. Herman, E.W. Montroll, Operat. Res. 6, 165 (1958)

    Article  Google Scholar 

  18. D.C. Gazis, R. Herman, R.B. Potts, Operat. Res. 7, 499 (1959)

    Article  Google Scholar 

  19. R. Herman, et al., Operat. Res. 7, 86 (1959)

    Article  Google Scholar 

  20. T. Tang, et al., Netw. Spatial Econ. 14, 465 (2014)

    Article  MathSciNet  Google Scholar 

  21. H. Huang, T. Tang, Z. Gao, Acta Mech. Sinica. 22, 131 (2006)

    Article  ADS  Google Scholar 

  22. S. Lee, D. Ngoduy, M. Keyvanekbatani, Transport. Res. C 106, 360 (2019)

    Article  Google Scholar 

  23. D. Yang, et al., inTransportation Research Board 94th Annual Meeting, Washington, DC United States, 2015

  24. T. Tang, et al., Physica A 390, 3362 (2011)

    Article  ADS  Google Scholar 

  25. P.G. Gipps, Transport. Res. B 20, 403 (1986)

    Article  Google Scholar 

  26. S. Kurata, T. Nagatani, Physica A 318, 537 (2003)

    Article  ADS  Google Scholar 

  27. R. Nagai, T. Nagatani, N. Taniguchi, Physica A 350, 548 (2005)

    Article  ADS  Google Scholar 

  28. P. Hidas, Transp. Res. C Emerg. Technol. 10, 351 (2002)

    Article  Google Scholar 

  29. L. Zheng, S. Ma, S. Zhong, Chin. Physi. B 20, 088701 (2011)

    Article  ADS  Google Scholar 

  30. K. Konishi, H. Kokame, K. Hirata, Eur. Phys. J. B 15, 715 (2000)

    Article  ADS  Google Scholar 

  31. D. Yang, et al., Physica A 395, 371 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Bando, et al., Phys. Rev. E 51, 1035 (1995)

    Article  ADS  Google Scholar 

  33. A. Nakayama, Y. Sugiyama, K. Hasebe, Phys. Rev. E 65, 016112 (2001)

    Article  ADS  Google Scholar 

  34. K. Hasebe, A. Nakayama, Y. Sugiyama, Phys. Rev. E 68, 026102 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Guo.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, B., Yang, D., Zhang, X. et al. Car-following model considering the lane-changing prevention effect and its stability analysis. Eur. Phys. J. B 93, 153 (2020). https://doi.org/10.1140/epjb/e2020-10028-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10028-3

Keywords

Navigation