Skip to main content
Log in

Mass distribution in 36.2 MeV alpha induced fission of \(^{232}\hbox {Th}\)

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Mass distribution of fission products has been determined in \(\upalpha +^{\mathrm {232}}\hbox {Th}\) reaction at \(E_{\mathrm {lab}}=36.2\) MeV using \(\upalpha \) particles from the cyclotron at the Variable Energy Cyclotron Centre (VECC), Kolkata. Yields of 64 fission products having half-lives in the range of about \(\sim 1\) min to several days have been measured using gamma ray spectrometry. The mass distribution shows a clear triple humped structure indicating the contribution from both asymmetric and symmetric modes of fission. The experimental mass distribution was well reproduced by the calculation from the GEF code, which takes into account the multi-chance fission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the relevant data including the representative gamma-ray spectra supporting the findings of the present study are given in the paper. Additional data such as gamma-ray spectra or other details can be provided by the corresponding author on request.]

References

  1. L. Meitner, O.R. Frisch, Nature 143, 239 (1939)

    Article  ADS  Google Scholar 

  2. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    Article  ADS  Google Scholar 

  3. S. Frankel, N. Metropolis, Phys. Rev. 72, 914 (1947)

    Article  ADS  Google Scholar 

  4. V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967)

    Article  ADS  Google Scholar 

  5. A.S. Newton, Phys. Rev. 75, 209 (1949)

    Article  ADS  Google Scholar 

  6. P.R. O’Connor, G.J. Seaborg, Phys. Rev. 74, 1189 (1948)

    Article  ADS  Google Scholar 

  7. R.H. Goeckermann, I. Perlman, Phys. Rev. 76, 628 (1949)

    Article  ADS  Google Scholar 

  8. T.C. Roginski, M.E. Davis, J.W. Cobble, Phys. Rev. C 4, 1361 (1971)

    Article  ADS  Google Scholar 

  9. A. Chakrabarti, S.K. Saha, T. Mukhopadhyay, A. Bandyopadhyay, A. Roy, C. Bhattacharya, S.K. Basu, Z. Bikash Sinha, Phys. A 345, 401 (1993)

    ADS  Google Scholar 

  10. R. Guin, S.M. Sahakundu, S.B. Manohar, Satya Prakash, M.V. Ramaniah, Radiochimica Acta 48, 7 (1989)

    Article  Google Scholar 

  11. A. Chaudhuri, T.K. Ghosh, K. Banerjee, S. Bhattacharya, C. Jhilam Sadhukhan, Bhattacharya S. Kundu, J.K. Meena, G. Mukherjee, R. Pandey, T.K. Rana, P. Roy, T. Roy, V. Srivastava, Phys. Rev. C 91, 044620 (2015)

    Article  ADS  Google Scholar 

  12. K. Hirose et al., Phys. Rev. Lett. 119, 222501 (2017)

    Article  ADS  Google Scholar 

  13. Y. Nagame et al., Radiochimica Acta 78, 3 (1997)

    Article  Google Scholar 

  14. P. Moller et al., Nature 409, 785 (2001)

    Article  ADS  Google Scholar 

  15. A. Turkevich, J.B. Niday, Phys. Rev. 84, 52 (1951)

    Article  ADS  Google Scholar 

  16. A. Chakrabarti, D.P. Chowdhury, S. Gangadharan, J. Arunachalam, R.M. Iyer, Nucl. Inst. Methods A 263, 421 (1988)

    Article  ADS  Google Scholar 

  17. K.H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nuclear Data Sheets 131, 107 (2016)

    Article  ADS  Google Scholar 

  18. J.F. Ziegler, J.P. Biersack, TRIM code, SRIM-2013

  19. https://www.fastcomtec.com

  20. https://www.nndc.bnl.gov/. Accessed Aug 2016

  21. P.K. Mukhopadhyay, in Proceedings of Symposium on Intelligent Nuclear Instrumentation, Mumbai, vol. 33 (2001), p. 307

  22. P.K. Mukhopadhyay, INIS Repos. 33, 33001318 (2001)

    Google Scholar 

  23. R. Tripathi, S. Sodaye, K. Sudarshan, R. Guin, Phys. Rev. C 88, 024603 (2013)

    Article  ADS  Google Scholar 

  24. R. Tripathi, S. Sodaye, K. Ramachandran, S.K. Sharma, P.K. Pujari, Int. J. Mod. Phys. E 27, 1850010 (2018)

    Article  ADS  Google Scholar 

  25. T.N. Nag, R. Tripathi, S. Sodaye, K. Sudarshan, K. Ramachandran, B.K. Nayak, P.K. Pujari, Phys. Rev. C 96, 044608 (2017)

    Article  ADS  Google Scholar 

  26. H. Umezawa, S. Baba, H. Baba, Nucl. Phys. A 160, 65 (1971)

    Article  ADS  Google Scholar 

  27. E.M. Kozulin, A.Ya. Rusanov, G.N. Smirenkin, Phys. At. Nucl. 56, 166 (1993)

    Google Scholar 

  28. H.H. Rossner, J.R. Huizenga, W.U. Schröder, Phys. Rev. Lett. 53, 38 (1984)

    Article  ADS  Google Scholar 

  29. W.J. Swiatecki, J. Phys. (Paris) 33, C5–45 (1972)

    Article  Google Scholar 

  30. A. Gavron, Phys. Rev. C 21, 230 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shri P. S. Chakraborty and operations team of K130 Cyclotron at VECC for their contribution in beam-delivery for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Banerjee.

Additional information

Communicated by Jose Benlliure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, D., Nag, T.N., Tripathi, R. et al. Mass distribution in 36.2 MeV alpha induced fission of \(^{232}\hbox {Th}\). Eur. Phys. J. A 56, 201 (2020). https://doi.org/10.1140/epja/s10050-020-00200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00200-1

Navigation