Skip to main content
Log in

Skin friction estimation on a surface under shock-boundary layer interaction

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

This article presents correlations for indirect measurement of skin friction inside a laminar separation bubble induced by hypersonic shock-boundary layer interaction (SBLI) on a flat plate. The correlations, based on parameters that are known to influence the SBLI region, were developed using exhaustive numerical and analytical studies. Experiments were conducted in a hypersonic shock tunnel at Mach 8.6 (±0.22) to measure surface heat-flux and pressure in the zone of SBLI on a flat plate, which were then used to supplement and validate the correlations. The data predicted by the correlations agreed reasonably well with that of exact solutions. The case studies contained non-reacting air, behaving as a perfect gas on a flat surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Abbreviations

C :

Chapman–Rubesin parameter

C p :

pressure coefficient, \( 2p/\left( {\rho_{\infty } V_{\infty }^{2} } \right) \)

c p :

specific heat at constant pressure (J/(kg-K)

C f :

skin friction coefficient, \( 2\tau /\left( {\rho_{\infty } V_{\infty }^{2} } \right) \)

C h :

Stanton number, \( q_{w} /\left( {\rho_{\infty } V_{\infty } \left( {h_{ad} - h_{w} } \right)} \right) \)

h :

enthalpy (J/kg)

h ad :

adiabatic-wall enthalpy (J/kg), had = T0 × cp × \( \sqrt {Pr} \) = T0 × 1005 × \( \sqrt {0.71} \)

L sb :

length of separation bubble

M :

Mach number

p :

pressure (N/m2)

Pr :

Prandtl number

q:

heat flux (W/m2)

r:

reattachment point

s:

separation point

Re :

Reynolds number

T :

temperature (K)

T * :

reference temperature (K), \( T^{*} = T_{\infty } \left( {1 + 0.032M_{\infty }^{2} + 0.58\left( {\frac{{T_{w} }}{{T_{\infty } }} - 1} \right)} \right) \)

V :

velocity (m/s)

\( x_{0} \) :

distance from leading edge where shock meets the flat plate in inviscid case

\( \gamma \) :

specific heat ratio

\( \delta_{0}^{*} \) :

displacement thickness of undisturbed flat-plate boundary layer at \( x_{0} , \) \( \delta_{0}^{*} = 0.664 \times \frac{\gamma - 1}{2} \times \frac{{M_{\infty }^{2} x_{0} }}{{\sqrt {Re_{{x_{0} }} } }} \times \left( {1 + 2.60\frac{{T_{w} }}{{T_{0} }}} \right) \) for weak viscous interaction

θ :

flow turn-angle on the shock generator (wedge angle) (deg.)

µ :

coefficient of dynamic viscosity (N-s/m2)

ρ :

density (kg/m3)

τ :

shear stress (N/m2)

\( \bar{\chi } \) :

viscous interaction parameter

SBLI:

shock-boundary layer interaction

e :

boundary-layer edge property

I:

shock-shear layer interaction point, shown in figure 4

p :

pressure-plateau region

r :

re-attachment point

s :

separation (initiation) point

w :

wall property

x :

property at distance ‘x’ from leading-edge of flat plate

:

freestream condition

0:

total condition

*:

evaluated at reference temperature, T*

References

  1. Meloy J, Griffin J, Sells J, Chandrasekharan V, Cattafesta L N and Sheplak M 2011 Experimental verification of a MEMS based skin friction sensor for quantitative wall shear stress measurement. AIAA Paper 2011-3995

  2. Vasudevan B 2005 Measurement of skin friction at hypersonic speeds using fiber-optic sensors. AIAA Paper 2005-3323

  3. Bowersox R D W, Schetz J A, Chadwick K and Deiwert S 1995 Technique for direct measurement of skin friction in high enthalpy impulsive scramjet flowfields. AIAA Journal 33: 1286–1291

    Article  Google Scholar 

  4. Novean M G, Schetz J A and Bowersox R D W 1997 Direct measurements of skin friction in complex supersonic flows. AIAA Paper 97-0394

  5. Holden M S 1978 A study of flow separation in regions of shock wave-boundary layer interaction in hypersonic flow. In: 11th Fluid and Plasma Dynamics Conference, pp. 1169–1190

  6. Kelly G M, Simmons J M and Paull A 1992 Skin-friction gauge for use in hypervelocity impulse facilities. AIAA Journal 30: 844–845

    Article  Google Scholar 

  7. van Driest E R 1952 Investigation of laminar boundary layer in compressive fluids using the Crocco method. NACA Technical Note 2597

  8. Goyne C P, Stalker R J and Paull A 2003 Skin-friction measurements in high-enthalpy hypersonic boundary layers. Journal of Fluid Mechanics 485: 1–32

    Article  Google Scholar 

  9. Meritt R J, Schetz J A, Marineau E C, Lewis D R and Daniel D T 2017 Direct skin friction measurements at Mach 10 in a hypervelocity wind tunnel. Journal of Spacecraft and Rockets 54: 871–882

    Article  Google Scholar 

  10. Schülein E 2006 Skin-friction and heat flux measurements in shock/boundary-layer interaction flows. AIAA Journal 44: 1732–1741

    Article  Google Scholar 

  11. Anderson J D Jr. 2006 Hypersonic and High-Temperature Gas Dynamics. 2nd edn. AIAA, Virginia, pp. 261–374

    Book  Google Scholar 

  12. John B and Kulkarni V 2014 Numerical assessment of correlations for shock wave boundary layer interaction. Computers and Fluids 90: 42–50

    Article  MathSciNet  Google Scholar 

  13. John B, Kulkarni V N and Natarajan G 2014 Shock wave boundary layer interactions in hypersonic flows. International Journal of Heat and Mass Transfer 70: 81–90

    Article  Google Scholar 

  14. Sahoo N, Saravanan S, Jagadeesh G and Reddy K P J 2006 Simultaneous measurement of aerodynamic and heat transfer data for large angle blunt cones in hypersonic shock tunnel. Sadhana 31: 557–581

    Article  Google Scholar 

  15. Knauss H, Roediger T, Bountin D A, Smorodsky B V, Maslov A A and Srulijes J 2009 Novel sensor for fast heat-flux measurements. Journal of Spacecraft and Rockets 46: 255–265

    Article  Google Scholar 

  16. Moore F K 1961 On local flat-plate similarity in the hypersonic boundary layer. Journal of the Aerospace Sciences 28: 753–762

    Article  MathSciNet  Google Scholar 

  17. Chapman D R, Kuehn D M and Larson H K 1958 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA Technical Report 1356

  18. Coleman H W and Steele W G 2009 Experimentation, Validation and Uncertainty Analysis for Engineers. 3rd edn. Wiley, New Jersey, pp. 61–81

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viren Menezes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kshetrimayum, M., Irimpan, K.J. & Menezes, V. Skin friction estimation on a surface under shock-boundary layer interaction. Sādhanā 45, 195 (2020). https://doi.org/10.1007/s12046-020-01437-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-020-01437-8

Keywords

Navigation