Skip to main content
Log in

Development of Energy-Efficient Techniques for Manufacturing and Studying Clinkerless Mineral Binders Made from Granulated Blast-Furnace Slag with a Fly Ash Admixture

  • Published:
Refractories and Industrial Ceramics Aims and scope

Cement matrix samples were prepared using mechanical and chemical activation of two types of granulated blast-furnace slag with a fly ash admixture. We studied the chemical, phase, and granulometric composition; specific surface area; morphology; and strength of such slags, as well as the effect of the alkali introduction method on compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. I. Dvorkin and O. L. Dvorkin, Construction Materials Science, Infra-Inzheneriya, Moscow (2017), 832 pp.

  2. P. I. Bozhenov, Multipurpose Utilization of Mineral Raw Materials and Ecology, Assosiatsiya Stroitel’nykh Vuzov, Moscow (1994), 268 pp.

  3. V. D. Glukhovskii, ed., Alkali Slag Binders and Associated Fine-Grained Concrete, Uzbekistan, Tashkent (1978), 485 pp.

  4. B. P. Danilov, Applications for Slag Binders in Precast Reinforced Concrete Production, Budivel’nik, Kiev (1964), 88 pp.

  5. A. V. Volzhenskii, Yu. S. Burov, and V. S. Kolokol’nikov, Mineral Binders (Technology and Properties). A College Textbook, Stroiizdat, Moscow (1979), 476 pp.

  6. L. I. Dvorkin and O. L. Dvorkin, Mineral Binders for Construction: A Practical Handbook, Infra-Inzheneriya, Moscow (2011), 544 pp.

  7. N. A. Eroshkina, M. O. Korovkin, I. V. Korovchenko, “Properties of fly-ash-based geopolymer binder at the Tom-Usinskaya Regional Hydroelectric Power Plant,” Novyi Universitet, no. 12 (34), pp. 30 – 34 (2014).

  8. V. S. Ramachandran, ed., Concrete Admixtures Handbook, Noyes, Park Ridge, NJ (1984) [Stroiizdat, Moscow (1988), 575 pp].

  9. M. C. G. Juenger, F. Winnefeld, J. L. Provis, and J. H. Ideker, “Advances in alternative cementitious binders,” Cem. Concr. Res. 41, 1232 – 1243 (2011). https://doi.org/10.1016/j.cemconres.2010.11.012.

    Article  CAS  Google Scholar 

  10. V. D. Glukhovskii and V. A. Pakhomov, Alkali Slag Cement and Concrete, Budivel’nyk, Kiev (1978), 223 pp [in Russian].

  11. M. Chi and R. Huang, “Binding mechanism and properties of alkali-activated fly ash/slag mortars,” Constr. Build. Mater. 40, 291 – 298 (2013). https://doi.org/10.1016/j.conbuildmat.2012.11.003.

    Article  Google Scholar 

  12. F.-Q. Zhao, W. Ni, H.-J. Wang, and H.-J. Liu, “Activated fly ash/slag blended cement,” Resour., Conserv. Recycl. 52, 303 – 313 (2007). https://doi.org/10.1016/j.resconrec.2007.04.002.

  13. F. Puertas, S. Martínez-Ramírez, S. Alonso, and T. Vazquez, “Alkali-activated fly ash/slag cements: strength behaviour and hydration products,” Cem. Concr. Res. 30, 1625 – 1632 (2000). https://doi.org/10.1016/S0008-8846(00)00298-2.

    Article  CAS  Google Scholar 

  14. A. Fernández-Jiménez, J. G. Palomo, and F. Puertas, “Alkali-activated slag mortars: mechanical strength behaviour,” Cem. Concr. Res. 29, 1313 – 1321 (1999). https://doi.org/10.1016/S0008-8846(99)00154-4.

    Article  Google Scholar 

  15. N. Marjanoviæ, M. Komljenoviæ, Z. Bašèareviæ, and V. Nikoliæ, “Comparison of two alkali-activated systems: mechanically activated fly ash and fly ash-blast furnace slag blends,” Procedia Eng. 108, 231 – 238 (2015). https://doi.org/10.1016/j.proeng.2015.06.142.

    Article  CAS  Google Scholar 

  16. J. Bijen, “Benefits of slag and fly ash,” Constr. Build. Mater. 10, 309 – 314 (1996). https://doi.org/10.1016/0950 – 0618(95)00014 – 3.

  17. N. Marjanoviæ, M. Komljenoviæ, Z. Bašèareviæ, V. Nikoliæ, and R. Petroviæ, “Physical-mechanical and microstructural properties of alkali-activated fly ash-blast furnace slag blends,” Ceram. Int. 41, 1421 – 1435 (2015). https://doi.org/10.1016/j.ceramint.2014.09.075.

    Article  CAS  Google Scholar 

  18. C. Shi and R. L. Day, “Acalorimetric study of early hydration of alkali-slag cements,” Cem. Concr. Res. 25, 1333 – 1346 (1995). https://doi.org/10.1016/0008-8846(95)00126-W.

    Article  CAS  Google Scholar 

  19. A. Palomo, M. W. Grutzeck, and M. T. Blanco, “Alkali-activated fly ashes: a cement for the future,” Cem. Concr. Res. 29, 1323 – 1329 (1999). https://doi.org/10.1016/S0008-8846(98)00243-9.

    Article  CAS  Google Scholar 

  20. G. Fang, W. K. Ho, W. Tu, et al., “Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature,” Constr. Build. Mater. 172, 476 – 487 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.008.

    Article  CAS  Google Scholar 

  21. Y. Ding, J.-G. Dai, C.-J. Shi, “Mechanical properties of alkali- activated concrete: A state-of-the-art review,” Constr. Build. Mater. 127, 68 – 79 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.121.

    Article  CAS  Google Scholar 

  22. W.-C. Wang, H.-Y. Wang, M.-H. Lo, “The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration,” Constr. Build. Mater. 84, 224 – 229 (2015). https://doi.org/10.1016/j.conbuildmat.2014.09.059.

    Article  Google Scholar 

  23. T. Williamson, M. C. G. Juenger, “The role of activating solution concentration on alkali-silica reaction in alkali-activated fly ash concrete,” Cem. Concr. Res. 83, 124 – 130 (2016). https://doi.org/10.1016/j.cemconres.2016.02.008.

    Article  CAS  Google Scholar 

  24. GOST 10180–2012. Concrete. Methods for Strength Determination Using Test Samples, Entered into force 2013-07-01, Standartinform, Moscow (2018), 30 pp.

  25. GOST 18105–2010. Concrete. Rules for Inspection and Evaluation of Strength, Entered into force 2012-09-01, Standartinform, Moscow (2018), 30 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Luchnikova.

Additional information

Translated from Novye Ogneupory, No. 2, pp. 52 – 58, February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchnikova, G.G., Druzhinina, M.E., Khaidarov, B.B. et al. Development of Energy-Efficient Techniques for Manufacturing and Studying Clinkerless Mineral Binders Made from Granulated Blast-Furnace Slag with a Fly Ash Admixture. Refract Ind Ceram 61, 106–111 (2020). https://doi.org/10.1007/s11148-020-00439-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00439-7

Keywords

Navigation