Skip to main content
Log in

Synthesis of Heat-Resistant Oxygen-Free Nb–Cr–Mo–Si–B Coatings from Compositions Modified with Refractory Group IV – Via Metal Chalcogenides

  • Published:
Refractories and Industrial Ceramics Aims and scope

Results from studies on the modification of Nb–Cr–Mo–Si–B composites with Mo chalcogenides are presented. Use of MoS2 and MoSe2 as integral parts of multicomponent oxygen-free compositions was shown to have positive effects due to the formation of highly active elemental Mo species resulting from their dissociation that determined the high heat resistance of coatings formed from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. V. T. Kalinin, A. S. Dudnikov, A. Ya. Kachan, et al., “Preparation of nanocrystalline compositions by controlled plasmachemical synthesis,” Vestn. Dvigatelestr., No. 1, 134 – 137 (2007).

  2. E. N. Kablov, S. A. Muboyadzhyan, and A. N. Lutsenko, “Nanostructured ion-plasma protective and strengthening coatings for gas-turbine engine blades,” Vopr. Materialoved., No. 2, 175 – 186 (2008).

    Google Scholar 

  3. L. B. Getsov, Materials and Strength of Gas Turbine Parts [in Russian], Izdatel’skii Dom, Rybinsk, 2010, 591 pp.

    Google Scholar 

  4. E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “Perspective high-temperature ceramic composite materials,” Ross. Khim. Zh., 54(1), 20 – 24 (2010).

    CAS  Google Scholar 

  5. F. Z. Utyashev, I. A. Burlakov, V. A. Geikin, et al., “Scientific fundamentals of high-efficiency roll forming technology for axially symmetric parts of a gas-turbine engine rotor of high-temperature alloy,” Probl. Mashinostr. Nadezhnosti Mash., No. 5, 96 – 105 (2013).

    Google Scholar 

  6. A. V. Varaksin, V. A. Kostylev, V. L. Lisin, et al., “Effect of electrochemical process parameters on granulometric composition and morphology of Ti powders,” Butler. Soobshch., 37(1), 62 – 67 (2014).

    Google Scholar 

  7. A. V. Varaksin, V. A. Kostylev, V. L. Lisin, et al., “Electrochemical production of nanoscale and ultrafine powders of metals and their carbides,” Butler. Soobshch., 37(1), 76 – 83 (2014).

    Google Scholar 

  8. V. L. Lisin, V. A. Kostylev, L. I. Leont’ev, et al., “Technology for producing nanoscale and ultrafine metal powders for various purposes by an electrochemical method,” in: Physical Chemistry and Technology in Metallurgy: Collected Works Dedicated to the 60th Anniversary of IMET UrO RAN [in Russian], Yuzhno-Ural’skoe Kn. Izd., Chelyabinsk, 2015, pp. 218 – 226.

  9. R. A. Andrievskii and A. V. Ragulya, Nanostructured Materials: Study Guide for Students of Higher Educational Institutions [in Russian], Akademiya, Moscow, 2005, 192 pp.

    Google Scholar 

  10. R. A. Andrievskii, Principles of Nanostructured Materials Science: Potential and Problems [in Russian], BINOM. Laboratoria Znanii, Moscow, 2012, 327 pp.

    Google Scholar 

  11. R. A. Andrievskii, “Nanomaterials for Extreme Conditions,” Khim. Zhizn, No. 6, 2 – 5 (2013).

    Google Scholar 

  12. R. A. Andrievskii, Metallic Nanomaterials Under Extreme Conditions: Study Guide [in Russian], Laboratoriya Znanii, Moscow, 2016, 102 pp.

    Google Scholar 

  13. G. A. Malygin, “Strength and plasticity of nanocrystalline materials and nanosized crystals,” Usp. Fiz. Nauk, 181(11), 1129 – 1156 (2011).

    Article  Google Scholar 

  14. L. B. Zuev and V. I. Danilov, Physical Bases of Material Strength [in Russian], Intellekt, Moscow, 2013, 373 pp.

    Google Scholar 

  15. V. M. Yurov, V. Ch. Laurinas, and S. A. Guchenko, “Several physics questions on the strength of metallic nanostructures,” Fiz.-Khim. Aspekty Izuch. Klasterov, Nanostrukt. Nanomater., No. 5, 408 – 412 (2013).

  16. A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Metal Nanoparticles in Polymers [in Russian], Khimiya, Moscow, 2000, 672 pp.

    Google Scholar 

  17. V. V. Volkov, T. A. Kravchenko, and V. I. Roldugin, “Metal nanoparticles in polymeric catalytic membranes and ion-exchange systems for advanced purification of water from molecular oxygen,” Usp. Khim., 82(5), 465 – 482 (2013).

    Article  Google Scholar 

  18. A. I. Loskutov, O. Ya. Uryupina, V. V. Vysotskii, et al., “The influence of the dispersion medium components on the structure and properties of silver and gold nanosized particles in metal-polymer nanocomposite materials,” Nanotekhnika, No. 21, 39 – 44 (2010).

  19. K. G. Lopat’ko, V. V. Olishevskii, A. I. Marinin, et al., “Formation of a nanosized metal fraction during electric-spark treatment of granules,” Elektron. Obrab. Mater., No. 6, 80 – 85 (2013).

    Google Scholar 

  20. N. I. Steblevskaya and M. A. Medkov, “Low-temperature extraction-pyrolytic synthesis of nanosized composites based on metal oxides,” Ross. Nanotekhnol., 5(1/2), 83 – 88 (2010).

    Article  Google Scholar 

  21. A. M. Bagamadova, V. V. Mamedov, A. Sh. Asvarov, et al., “Production of zinc-oxide nanopowder by spontaneous explosive pyrolysis of citrate complexes,” Zh. Tekh. Fiz., 82(4), 156 – 158 (2012).

    Google Scholar 

  22. V. M. Shekunova, Yu. T. Sinyapkin, I. I. Dudenkulova, et al., “Catalytic pyrolysis of light hydrocarbons in the presence of ultrafine particles formed by electrically induced explosive dispersion of metal wires,” Neftekhimiya, 53(2), 107 – 111 (2013).

    Google Scholar 

  23. A. I. Gusev and A. A. Rempel’, Nanocrystalline Materials [in Russian], Fizmatlit, Moscow, 2000, 224 pp.

  24. S. P. Zimin and E. S. Gorlachev, Nanostructured Lead Chalcogenides, Izd. Yaroslavskogo Gos. Univ. im. P. G. Demidova, Yaroslavl, 2011, 232 pp.

    Google Scholar 

  25. E. V. Maraeva, “Production and study of nanostructured polycrystalline layers based on lead chalcogenides,” Fundam. Probl. Radioelektron. Priborostr., 14(3), 47 – 50 (2014).

    Google Scholar 

  26. V. E. Fedorov, Yu. V. Mironov, S. B. Artemkina, et al., “Dispersion of layered molybdenum and tungsten chalcogenides and production of thin films from their colloidal dispersions,” Vestn. Nats. Tekh. Univ., Khim. Khim. Tekhnol. Ekol., No. 57, 168 – 175 (2013).

  27. L. A. Chernozatonskii and A. A. Artyukh, “Quasi-two-dimensional transition metal dichalcogenides: Structure, synthesis, properties and applications,” Usp. Fiz. Nauk, 188(1), 3 – 30 (2018).

    Article  Google Scholar 

  28. A. Kandemir, H. Yapicioglu, A. Kinaci, et al., “Thermal transport properties of MoS2 and MoSe2 monolayers,” Nanotechnology, 27(5), 055703 – 055709 (2016).

    Article  Google Scholar 

  29. S. V. Khashkovskii, “High-temperature synthesis of heat-resistant borosilicide coatings of compositions containing molybdenum chalcogenides,” in: Heat-resistant Functional Coatings: Proceedings of the XIXth All-Russian Convention [in Russian], Vol. 2, V. Ya. Shevchenko (ed.), Yanus, St. Petersburg, 2003, pp. 138 – 141.

  30. V. P. Babak, V. V. Shchepetov, and S. D. Nedaiborshch, “Features of friction and wear in vacuo of detonation coatings of Cr–Si–B containing molybdenum disulfide,” Vestn. Nats. Tekh. Univ., Ser.: Mekh.-Tekh. Sist. Kompleksy, No. 17, 24 – 29 (2016).

  31. G. S. Borisov and Yu. I. Dytnerskii, Main Processes and Apparatuses of Chemical Technology [in Russian], Al’yans, Moscow, 2010, 496 pp.

    Google Scholar 

  32. L. A. Tkachenko, A. Yu. Shaulov, and A. A. Berlin, “High-temperature protective coatings for carbon fibers,” Neorg. Mater., 48(3), 261 – 271 (2012).

    Article  Google Scholar 

  33. D. Chiappe, E. Scalise, E. Cinquanta, et al., “Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface,” Adv. Mater., 26(13), 2096 – 2101 (2014).

    Article  CAS  Google Scholar 

  34. E. A. Fedorova, L. N. Maskaeva, S. S. Tulenin, et al., “Composition and morphology of chemically deposited films of Cu2Se–Ga2Se3,” Kondens. Sredy Mezhfaznye Granitsy, 14(4), 489 – 495 (2012).

    CAS  Google Scholar 

  35. S. S. Tulenin, V. F. Markov, E. A. Fedorova, et al., “Hydrochemical synthesis of metal chalcogenide films. Part 14. X-ray photoelectron spectroscopy of CuGaSe2 films produced by hydrochemical deposition,” Butler. Soobshch., 30(4), 105 – 122 (2012).

    Google Scholar 

  36. D Kong, H. Wang, J. J. Cha, et al., “Synthesis of MoS2 and MoSe2 films with vertically aligned layers,” Nano Lett., 13(3), 1341 – 1347 (2013).

    Article  CAS  Google Scholar 

  37. S. S. Tulenin, “Hydrochemical deposition of In2S3 and In2Se3 films and chalcopyrite structures based on them,” Candidate Dissertation in Chemical Sciences, Ekaterinburg, 2015, 197 pp

    Google Scholar 

  38. D. D. Titov, Yu. F. Kargin, N. A. Popova, et al., “New composite materials based on molybdenum disilicide,” Perspekt. Mater., No. 11, 493 – 500 (2011).

    Google Scholar 

  39. D. D. Titov, A. S. Lysenkov, Y. F. Kargin, et al., “Sintering activation energy MoSi2–WSi2–Si3N4 ceramic,” in: IOP Conf. Ser.: Mater. Sci. Eng., IOP Publishing, Vol. 347, No. 1, 012024 (2018).

  40. L. P. Efimenko, M. V. Sazonova, K. E. Pugachev, et al., “Thermal stability of MoSi2–TiB2–CrB2 composites at 900 – 1400°C,” Fiz. Khim. Stekla, 39(2), 308 – 325 (2013).

  41. A. M. Stolin, P. M. Bazhin, M. V. Mikheev, et al., “Silicide ceramic synthesis based on molybdenum disilicide in a combustion regime under high-temperature deformation conditions,” Nov. Ogneupory, No. 6, 56 – 61 (2015).

    Google Scholar 

  42. S. N. Perevislov, A. S. Lysenkov, and S. V. Vikhman, “Effect of Si additions on the microstructure and mechanical properties of hot-pressed B4C,” Inorg. Mater., 53(4), 376 – 380 (2017).

    Article  CAS  Google Scholar 

  43. I. A. Rumyantsev and S. N. Perevislov, “Lightweight composite cermets obtained by titanium-plating,” Refract. Ind. Ceram., 53(7), 405 – 409 (2017).

    Article  Google Scholar 

  44. S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, “High density boron carbide ceramics,” Refract. Ind. Ceram., 59(1), 32 – 36 (2018).

    Article  CAS  Google Scholar 

  45. S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, “Phase composition and microstructure of reaction-bonded boron-carbide materials,” Refract. Ind. Chem., 59(2), 179 – 183 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated from Novye Ogneupory, No. 1, pp. 63 – 70, February, 2020.

S. V. Khashkovsky is deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khashkovsky, S.V., Perevislov, S.N. Synthesis of Heat-Resistant Oxygen-Free Nb–Cr–Mo–Si–B Coatings from Compositions Modified with Refractory Group IV – Via Metal Chalcogenides. Refract Ind Ceram 61, 61–67 (2020). https://doi.org/10.1007/s11148-020-00431-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00431-1

Keywords

Navigation