Skip to main content
Log in

Preparation and Heat Resistance of Porous Titanium Carbosilicide

  • Published:
Refractories and Industrial Ceramics Aims and scope

The results of studies on the preparation of titanium carbosilicide with porosities of 20, 40, and 60% are presented. Experimental samples were obtained using a pore former in the form of NaCl crystals. Sintering of porous samples at temperatures up to 1300°C was characterized using thermomechanical analysis. The pore structure was studied at the macro- and micro-levels using the method of optical microscopy. The nature of the oxidation of the studied samples was revealed based on mass change with the duration of tests and intensity of corrosion in air at 1100°C. X-ray diffraction analysis and Raman spectroscopy results showed that during high-temperature oxidation, predominantly titanium oxide is formed in the form of rutile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. M. Potoczek, A. Chmielarz, M. D. M. Innocentini, et al., “Porosity effect on microstructure, mechanical, and fluid dynamic properties of Ti2AlC by direct foaming and gel-casting”, J. Am. Ceram. Soc., 101, 5346 – 5357 (2018). DOI: https://doi.org/10.1111/jace.15802.

    Article  CAS  Google Scholar 

  2. S. Amini, C. Y. Ni, and M. W. Barsoum, “Processing, microstructural characterization, and mechanical properties of a Ti2AlC/nanocrystalline Mg-matrix composite”, Compos. Sci. Technol., 69, 414 (2009). DOI: https://doi.org/10.1016/j.compscitech.2008.11.007.

    Article  CAS  Google Scholar 

  3. S. Amini and M. W. Barsoum, “On the effect of texture on the mechanical properties of nanocrystalline Mg-matrix composites reinforced with MAX phases”, Mater. Sci. Eng. A, 527, 3707 – 3718 (2010). DOI: https://doi.org/10.1016/j.msea.2010.01.073.

    Article  CAS  Google Scholar 

  4. A. Kontsos, T. Loutas, V. Kostopoulos, et al., “Nanocrystalline Mg-MAX composites: mechanical behavior characterization via acoustic emission monitoring”, Acta Mater., 59, 5716 – 5727 (2011). DOI: https://doi.org/10.1016/j.actamat.2011.05.048.

    Article  CAS  Google Scholar 

  5. N. P. Brodnikovskii, M. P. Burka, D. G. Verbilo, et al., “Structure and mechanical properties of porous titanosilicon carbide Ti3SiC2”, Powder Metall. Met. Ceram., 42, 424 – 432 (2003).

    Article  CAS  Google Scholar 

  6. S. A. Firstov, V. F. Gorban, I. I. Ivanova, and E. P. Pechkovskii, “Mechanical properties of porous Ti3SiC2/TiC and Ti4AlN3/TiN nanolaminates at 20 to 1300°C”, Powder Metall. Met. Ceram., 49, 414 – 423 (2010). DOI: https://doi.org/10.1007/s11106-010-9252-2.

    Article  CAS  Google Scholar 

  7. S. A. Firstov, E. P. Pechkovskii, I. I. Ivanova, et al., “Effect of the composition and porosity of sintered titanium nanolaminates on their mechanical properties at high temperatures”, Strength Mater., 38(6), 24 – 36 (2006). DOI: https://doi.org/10.1007/s11223-006-0084-8.

    Article  CAS  Google Scholar 

  8. H. Zhang, X. Liu, and Y. Jiang, “Pore formation process of porous Ti3SiC2 fabricated by reactive sintering”, Materials, No. 10(2), p. 163 (2017). DOI: https://doi.org/10.3390/ma10020163.

  9. L. Hu, I. Karaman, and M. Radovic, “Simple, inexpensive synthesis of damage-tolerant MAX phase foams”, Am. Ceram. Soc. Bull., 92(5), pp. 31, 32 (2013).

    CAS  Google Scholar 

  10. O. K. Lepakova, V. I. Itin, E. G. Astafurova, et al., “Synthesis, phase composition, structure and strength properties of porous materials based on the Ti3SiC2 compound” [in Russian], Fizicheskaya Mezomekhanika, No. 2, 108 – 113 (2016).

  11. Z. Sun, Y. Lang, M. Li, and Y. Zhou, “Preparation of reticulated MAX-phase support with morphology-controllable nanostructured ceria coating for gas exhaust catalyst devices”, J. Am. Ceram. Soc., 93, 2591 (2010). DOI: https://doi.org/10.1111/j.1551-2916.2010.03776.x.

    Article  CAS  Google Scholar 

  12. T. Thomas, “Fabrication techniques to produce micro and macro porous MAX-phase Ti2AlC ceramic”, University of Bath (2014).

  13. C. Bowen and T. Thomas, “Macro-porous Ti2AlC MAX-phase ceramics by the foam replication method”, Ceram. Int., 41, 12178 – 12185 (2015). DOI: https://doi.org/10.1016/j.ceramint.2015.06.038.

    Article  CAS  Google Scholar 

  14. Y. Torres, J. J. Pavón, and J. A. Rodríguez, “Processing and characterization of porous titanium for implants by using NaCl as space holder”, J. Mater. Process. Technol., 212, 1061 (2012). DOI: https://doi.org/10.1016/j.jmatprotec.2011.12.015.

    Article  CAS  Google Scholar 

  15. Metal Foams: Fundamentals and Applications, ed. by Nihad Dukhan, DEStech Publications, Inc. (2013) 458 pp. DOI: https://doi.org/10.1016/j.applthermaleng.2013.07.002.

  16. N. Wenjuan, B. Chenguang, Q. Guibao, and W. Qiang, “Processing and properties of porous titanium using space holder technique”, Mater. Sci. Eng. A, 506, 148 (2009). DOI: https://doi.org/10.1016/j.msea.2008.11.022.

    Article  CAS  Google Scholar 

  17. C. E. Wen, M. Mabuchi, M. Yamada, et al., “Processing of biocompatible porous Ti and Mg”, Scripta Mater., 45, 1147 (2001). DOI: https://doi.org/10.1016/S1359-6462(01)01132-0.

    Article  CAS  Google Scholar 

  18. Z. Esen and S. Bor, “Processing of titanium foams using magnesium spacer particles”, Scripta Mater., 56, 341 (2007). DOI: https://doi.org/10.1016/j.scriptamat.2006.11.010.

    Article  CAS  Google Scholar 

  19. J. Gonzalez-Julian and M. Bram, “Processing and characterization of porous Ti2AlC using space holder technique”, Key Eng. Mater., 704, 197 – 203 (2016). DOI: https://doi.org/10.4028/www.scientific.net/KEM.704.197.

    Article  Google Scholar 

  20. I.-H. Kim, W. Lee, S.-H. Ko, and J. M. Jang, “Compression temperature and binder ratio on a process for fabrication of open-celled porous Ti”, Mater. Res. Bull., 45, 355 (2010). DOI: https://doi.org/10.1016/j.materresbull.2009.12.002.

    Article  CAS  Google Scholar 

  21. Y. W. Gu, M. S. Yong, B. Y. Tay, and C. S. Lim, “Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2”, Mater. Sci. Eng. C., 29, 1515 (2009). DOI: https://doi.org/10.1016/j.msec.2008.11.003.

    Article  CAS  Google Scholar 

  22. B. Velasco, E. Gordo, and S. A. Tsipas, “MAX phase Ti2AlC foams using a leachable space-holder material”, J. Alloys Compd., 646, 1036 – 1042 (2015). DOI: https://doi.org/10.1016/j.jallcom.2015.05.235.

    Article  CAS  Google Scholar 

  23. L. Hu, R. Benitez, S. Basu, et al., “Processing and characterization of porous Ti2AlC with controlled porosity and pore size”, Acta Mater., 60, 6266 – 6277 (2012). DOI: https://doi.org/10.1016/j.actamat.2012.07.052.

    Article  CAS  Google Scholar 

  24. B. Velasco, E. Gordo, L. Hu, et al., “Influence of porosity on elastic properties of Ti2AlC and Ti3SiC2 MAX phase foams”, J. Alloys Compd., 764, 24 – 35 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.06.027.

    Article  CAS  Google Scholar 

  25. Ya. E. Geguzin, Physics of Sintering [in Russian], 2nd ed., revised and supplemented, Nauka, Moscow (1984) 312 p.

  26. S. A. Firstov and E. P. Pechkovsky, “High-temperature shortterm and long hardness of sintered compact and porous titanium-siliceous carbide Ti3SiC2”, Science and Sintering, 36(1), 11 – 20 (2004). DOI: https://doi.org/10.2298/SOS0401011F.

    Article  CAS  Google Scholar 

  27. V. N. Antsiferov and V. G. Gilev, “Role of bulk and mass effects of reactions in reaction sintering processes”, Russian Journal of Non-Ferrous Metals, 57(7), 715 – 722 (2016). (Scopus). DOI: https://doi.org/10.3103/S1067821216070026.

Download references

This work was financially supported by the Russian Foundation for Basic Research and the Belarusian Republican Foundation for Fundamental Research, grant No. 18-58- 00031 Bel a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Gilev.

Additional information

Translated from Novye Ogneupory, No. 1, pp. 57 – 62, January 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smetkin, A.A., Gilev, V.G., Kachenyuk, M.N. et al. Preparation and Heat Resistance of Porous Titanium Carbosilicide. Refract Ind Ceram 61, 55–60 (2020). https://doi.org/10.1007/s11148-020-00430-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00430-2

Keywords

Navigation