Skip to main content
Log in

Layer-dependent and light-tunable surface potential of two-dimensional indium selenide (InSe) flakes

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As a fundamental surface property of two-dimensional (2D) materials, surface potential is critical for their emerging electronic applications and essential for van der Waals heterostructure engineering. Here, we report the surface potential of few-layer InSe. The effect of layer count, light intensity and different deposited substrates is considered. Few-layer InSe flakes were exfoliated from bulk InSe crystals on Si/SiO2 with 300-nm-thick thermal oxide and Si/SiO2 with 300-nm-thick thermal oxide and prefabricated micro-wells with 3 μm in diameter. The samples were measured by Kelvin probe force microscopy and tuned by an integrated 405-nm (3.06 eV) laser. Based on the work function of SiO2 (5.00 eV), the work functions of supported and suspended InSe are determined. These results show that the work function of InSe decreases with the increase in the layer count of both supported InSe and suspended InSe. Besides, by introducing a tunable laser light, the influence of light intensity on surface potential of supported InSe was studied. The surface potential (SP) and surface potential shift between light and dark states (∆SP =SPlight − SPdark) of supported InSe were measured and determined. These results present that the surface potential of supported InSe decreases with the increase in the light intensity and also decreases with the increase in the layer count. This is evident that light excites electrons, resulting in decreased surface potential, and the amount of electrons excited is correlated with light intensity. Meanwhile, SP between light and dark states decreases with the increase in the layer count, which suggests that the influence of light illumination decreases with the increase in the layer count of few-layer InSe flakes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu M, Liang T, Shi M, Chen H. Graphene-like two-dimensional materials. Chem Rev. 2013;113(5):3766.

    Article  CAS  Google Scholar 

  2. Huang W, Gan L, Li H, Ma Y, Zhai T. 2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics. Cryst Eng Commun. 2016;18(22):3968.

    Article  CAS  Google Scholar 

  3. Ferrari AC, Bonaccorso F, Fal’ko V, Novoselov KS, Roche S, Boggild P, Borini S, Koppens FH, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhanen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn JH, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SR, Tannock Q, Lofwander T, Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015;7(11):4598.

    Article  CAS  Google Scholar 

  4. Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438(7065):201.

    Article  CAS  Google Scholar 

  5. Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.

    Article  CAS  Google Scholar 

  6. Liu Y, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano. 2017;11(10):9614.

    Article  CAS  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov A. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    Article  CAS  Google Scholar 

  8. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol. 2010;5(10):722.

    Article  CAS  Google Scholar 

  9. Wang L, Meric I, Huang PY, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos LM, Muller DA. One-dimensional electrical contact to a two-dimensional material. Science. 2013;342(6158):614.

    Article  CAS  Google Scholar 

  10. Wang FK, Zhai TY. Towards scalable van der Waals heterostructure arrays. Rare Met. 2020;39(4):327.

    Article  CAS  Google Scholar 

  11. Peng Q, Xiong R, Sa B, Zhou J, Wen C, Wu B, Anpo M, Sun Z. Computational mining of photocatalysts for water splitting hydrogen production: two-dimensional InSe-family monolayers. Catal Sci Technol. 2017;7(13):2744.

    Article  CAS  Google Scholar 

  12. Bandurin DA, Tyurnina AV, Yu GL, Mishchenko A, Zolyomi V, Morozov SV, Kumar RK, Gorbachev RV, Kudrynskyi ZR, Pezzini S, Kovalyuk ZD, Zeitler U, Novoselov KS, Patane A, Eaves L, Grigorieva IV, Fal’ko VI, Geim AK, Cao Y. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol. 2017;12(3):223.

    Article  CAS  Google Scholar 

  13. Li Y, Yu C, Gan Y, Kong Y, Jiang P, Zou D, Li P, Yu X, Wu R, Zhao H, Gao CF, Li J. Elastic properties and intrinsic strength of two-dimensional InSe flakes. Nanotechnology. 2019;30(33):335703.

    Article  CAS  Google Scholar 

  14. Cao R, Wang HD, Guo ZN, Sang DK, Zhang LY, Xiao QL, Zhang YP, Fan DY, Li JQ, Zhang H. Black phosphorous/indium selenide photoconductive detector for visible andnear-infrared light with high sensitivity. Adv Opt Mater. 2019;7(12):1900020.

    Article  CAS  Google Scholar 

  15. Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2017;37(2):107.

    Article  CAS  Google Scholar 

  16. Li Y, Xu CY, Zhen L. Surface potential and interlayer screening effects of few-layer MoS2 nanoflakes. Appl Phys Lett. 2013;102(14):143110.

    Article  CAS  Google Scholar 

  17. Kim JH, Lee J, Kim JH, Hwang CC, Lee C, Park JY. Work function variation of MoS2 atomic layers grown with chemical vapor deposition: the effects of thickness and the adsorption of water/oxygen molecules. Appl Phys Lett. 2015;106(25):251606.

    Article  CAS  Google Scholar 

  18. Li F, Qi J, Xu M, Xiao J, Xu Y, Zhang X, Liu S, Zhang Y. Layer dependence and light tuning surface potential of 2D MoS2 on various substrates. Small. 2017;13(14):1603103.

    Article  CAS  Google Scholar 

  19. Tamulewicz M, Kutrowska-Girzycka J, Gajewski K, Serafinczuk J, Sierakowski A, Jadczak J, Bryja L, Gotszalk TP. Layer number dependence of the work function and optical properties of single and few layers MoS2: effect of substrate. Nanotechnology. 2019;30(24):245708.

    Article  CAS  Google Scholar 

  20. Sang DK, Wang H, Qiu M, Cao R, Guo Z, Zhao J, Li Y, Xiao Q, Fan D, Zhang H. Two dimensional beta-InSe with layer-dependent properties: band alignment, work function and optical properties. Nanomaterials (Basel). 2019;9(1):82.

    Article  CAS  Google Scholar 

  21. Li J, Huang B, Nasr Esfahani E, Wei L, Yao J, Zhao J, Chen W. Touching is believing: interrogating halide perovskite solar cells at the nanoscale via scanning probe microscopy. NPJ Quantum Mater. 2017;2(1):56.

    Article  CAS  Google Scholar 

  22. Melitz W, Shen J, Kummel AC, Lee S. Kelvin probe force microscopy and its application. Surf Sci Rep. 2011;66(1):1.

    Article  CAS  Google Scholar 

  23. Li Y, Yu C, Gan Y, Jiang P, Yu J, Ou Y, Zou DF, Huang C, Wang J, Jia T, Luo Q, Yu XF, Zhao H, Gao CF, Li J. Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. NPJ Comput Mater. 2018;4:49.

    Article  CAS  Google Scholar 

  24. Li Y, Kong Y, Peng J, Yu C, Li Z, Li P, Liu Y, Gao CF, Wu R. Rapid identification of two-dimensional materials via machine learning assisted optic microscopy. J Materiomics. 2019;5(3):413.

    Article  Google Scholar 

  25. Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta G, Vajtai R. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano. 2014;8(2):1263.

    Article  CAS  Google Scholar 

  26. Nataly Chen Q, Liu Y, Liu Y, Xie S, Cao G, Li J. Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy. Appl Phys Lett. 2012;101(6):063901.

    Article  CAS  Google Scholar 

  27. Brotons-Gisbert M, Sánchez-Royo JF, Martínez-Pastor JP. Thickness identification of atomically thin InSe nanoflakes on SiO2/Si substrates by optical contrast analysis. Appl Surf Sci. 2015;354:453.

    Article  CAS  Google Scholar 

  28. Sánchez-Royo JF, Muñoz-Matutano G, Brotons-Gisbert M, Martínez-Pastor JP, Segura A, Cantarero A, Mata R, Canet-Ferrer J, Tobias G, Canadell E, Marqués-Hueso J, Gerardot BD. Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 2014;7(10):1556.

    Article  CAS  Google Scholar 

  29. Nan H, Guo S, Cai S, Chen Z, Zafar A, Zhang X, Gu X, Xiao S, Ni Z. Producing air-stable InSe nanosheet through mild oxygen plasma treatment. Semicond Sci Technol. 2018;33(7):074002.

    Article  CAS  Google Scholar 

  30. Vella E, Messina F, Cannas M, Boscaino R. Unraveling exciton dynamics in amorphous silicon dioxide: interpretation of the optical features from 8 to 11 eV. Phys Rev B. 2011;83(17):174201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Key-Area Research and Development Program of Guangdong Province (No. 2018B010109009), the Shenzhen Science and Technology Innovation Committee (Nos. JCYJ20170818155752559 and JCYJ20170818160815002), the Instrument Developing Project of Chinese Academy of Sciences (No. ZDKYYQ20180004), the National Natural Science Foundation of China (No. 11872203) and the National Natural Science Foundation of China for Creative Research Groups (No. 51921003). Yu-Hao Li also thanks the support of the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yuan Zhou, Cun-Fa Gao or Jiang-Yu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YH., Yu, CB., Li, Z. et al. Layer-dependent and light-tunable surface potential of two-dimensional indium selenide (InSe) flakes. Rare Met. 39, 1356–1363 (2020). https://doi.org/10.1007/s12598-020-01511-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01511-4

Keywords

Navigation