Skip to main content
Log in

Regulation of photosystem I-light-harvesting complex I from a red alga Cyanidioschyzon merolae in response to light intensities

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic organisms use different means to regulate their photosynthetic activity in respond to different light conditions under which they grow. In this study, we analyzed changes in the photosystem I (PSI) light-harvesting complex I (LHCI) supercomplex from a red alga Cyanidioschyzon merolae, upon growing under three different light intensities, low light (LL), medium light (ML), and high light (HL). The results showed that the red algal PSI-LHCI is separated into two bands on blue-native PAGE, which are designated PSI-LHCI-A and PSI-LHCI-B, respectively, from cells grown under LL and ML. The former has a higher molecular weight and binds more Lhcr subunits than the latter. They are considered to correspond to the two types of PSI-LHCI identified by cryo-electron microscopic analysis recently, namely, the former with five Lhcrs and the latter with three Lhcrs. The amount of PSI-LHCI-A is higher in the LL-grown cells than that in the ML-grown cells. In the HL-grown cells, PSI-LHCI-A completely disappeared and only PSI-LHCI-B was observed. Furthermore, PSI core complexes without Lhcr attached also appeared in the HL cells. Fluorescence decay kinetics measurement showed that Lhcrs are functionally connected with the PSI core in both PSI-LHCI-A and PSI-LHCI-B obtained from LL and ML cells; however, Lhcrs in the PSI-LHCI-B fraction from the HL cells are not coupled with the PSI core. These results indicate that the red algal PSI not only regulates its antenna size but also adjusts the functional connection of Lhcrs with the PSI core in response to different light intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abram M, Białek R, Szewczyk S, Karolczak J, Gibasiewicz K, Kargul J (2020) Remodeling of excitation energy transfer in extremophilic red algal PSI-LHCI complex during light adaptation. Biochim Biophys Acta Bioenerg 1861:148093

    CAS  PubMed  Google Scholar 

  • Adachi H et al (2009) Towards structural elucidation of eukaryotic photosystem II: purification, crystallization and preliminary X-ray diffraction analysis of photosystem II from a red alga. Biochim Biophys Acta 1787:121–128

    CAS  PubMed  Google Scholar 

  • Adir N, Bar-Zvi S, Harris D (2020) The amazing phycobilisome. Biochim Biophys Acta Bioenerg 1861:148047

    CAS  PubMed  Google Scholar 

  • Ago H et al (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J Biol Chem 291:5676–5687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Archiv fur Mikrobiologie 32:270–277

    CAS  PubMed  Google Scholar 

  • Antoshvili M, Caspy I, Hippler M, Nelson N (2019) Structure and function of photosystem I in Cyanidioschyzon merolae. Photosynth Res 139:499–508

    CAS  PubMed  Google Scholar 

  • Ballottari M, Dall'Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958

    CAS  PubMed  Google Scholar 

  • Ballottari M et al (2014) Regulation of photosystem I light harvesting by zeaxanthin. Proc Natl Acad Sci USA 111:2431–2438

    Google Scholar 

  • Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M (2012) Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J Biol Chem 287:5833–5847

    CAS  PubMed  Google Scholar 

  • Büchel C (2015) Evolution and function of light harvesting proteins. J Plant Physiol 172:62–75

    PubMed  Google Scholar 

  • Busch A, Nield J, Hippler M (2010) The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae. Plant J 62:886–897

    CAS  PubMed  Google Scholar 

  • Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501

    CAS  PubMed  Google Scholar 

  • Durnford DG et al (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48:59–68

    CAS  PubMed  Google Scholar 

  • Enami I, Murayama H, Ohta H, Kamo M, Nakazato K, Shen J-R (1995) Isolation and characterization of a photosystem II complex from a red alga Cyanidium caldarium: association of cytochrome c-550 and a 12 kDa protein with the complex. Biochim Biophys Acta 1232:208–216

    PubMed  Google Scholar 

  • Enami I, Kikuchi S, Fukuda T, Ohta H, Shen J-R (1998) Binding and functional properties of four extrinsic proteins of photosystem II from a red alga, Cyanidium caldarium as studied by release-reconstitution experiments. Biochemistry 37:2787–2793

    CAS  PubMed  Google Scholar 

  • Enami I, Okumura A, Nagao R, Iwai M, Suzuki T, Shen J-R (2008) Structures and functions of the extrinsic proteins of photosystem II from different species. Photosynth Res 98:349–363

    CAS  PubMed  Google Scholar 

  • Gordillo FJ, Jiménez C, Chavarría J, Xavier Niell F (2001) Photosynthetic acclimation to photon irradiance and its relation to chlorophyll fluorescence and carbon assimilation in the halotolerant green alga Dunaliella viridis. Photosynth Res 68:225–235

    CAS  PubMed  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 47:685–714

    CAS  Google Scholar 

  • Grossman AR et al (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet 29:231–288

    CAS  PubMed  Google Scholar 

  • Gundermann K, Büchel C (2014) Structure and functional heterogeneity of fucoxanthin-chlorophyll proteins in diatoms. In: Hohmann-Marriott MF (ed) The structural basis of biological energy generation. Springer, Dordrecht, pp 21–37

    Google Scholar 

  • Haniewicz P et al (2018) Molecular mechanisms of photoadaptation of photosystem I supercomplex from an evolutionary cyanobacterial/algal intermediate. Plant Physiol 176:1433–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Ann Rev Plant Physiol Plant Mol Biol 47:655–684

    CAS  Google Scholar 

  • Ikeuchi M, Inoue Y (1988) A new 4.8-kDa polypeptide intrinsic to the PSII reaction center, as revealed by modified SDS-PAGE with improved resolution of low-molecular-weight proteins. Plant Cell Physiol 29:1233–1239

    CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    CAS  PubMed  Google Scholar 

  • Kawakami K, Iwai M, Ikeuchi M, Kamiya N, Shen J-R (2007) Location of PsbY in oxygen-evolving photosystem II revealed by mutagenesis and X-ray crystallography. FEBS Lett 581:4983–4987

    CAS  PubMed  Google Scholar 

  • Krupnik T (2013) Reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae. J Biol Chem 288:23529–23542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML, Blankenship RE (2013) Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342:1104–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, You X, Sun S, Wang X, Qin S, Sui SF (2020) Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature 579:146–151

    CAS  PubMed  Google Scholar 

  • Matsuzaki M et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    CAS  PubMed  Google Scholar 

  • Melis A, Neidhardt J, Benemann JR (1998) Dunaliella salina (Chlorphyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525

    Google Scholar 

  • Mimuro M, Kikuchi H (2003) Antenna systems and energy transfer in cyanophyta and rhodophyta. In: Green B, Parson WW (eds) Light-harvesting antennas in photosynthesis. Springer, Dordrecht, pp 281–306

    Google Scholar 

  • Minagawa J (2011) State transitions–the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905

    CAS  PubMed  Google Scholar 

  • Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671

    CAS  PubMed  Google Scholar 

  • Nagao R, Takahashi S, Suzuki T, Dohmae N, Nakazato K, Tomo T (2013) Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynth Res 117:281–288

    CAS  PubMed  Google Scholar 

  • Nagao R et al (2019) Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII. Nat Plants 5:890–901

    CAS  PubMed  Google Scholar 

  • Pi X et al (2018) Unique organization of photosystem I-light harvesting supercomplex revealed by cryo-EM from a red alga. Proc Natl Acad Sci USA 115:4423–4428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pi X, Zhao S, Wang W, Liu D, Xu C, Han G, Kuang T, Sui SF, Shen JR (2019) The pigment-protein network of a diatom photosystem II-light harvesting antenna supercomplex. Science 365:eaax4406

    CAS  PubMed  Google Scholar 

  • Qin X et al (2015) Isolation and characterization of a PSI-LHCI super-complex and its sub-complexes from a siphonaceous marine green alga, Bryopsis corticulans. Photosynth Res 123:61–76

    CAS  PubMed  Google Scholar 

  • Schägger H, Cramer WA, von Jagow G (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217:220–230

    PubMed  Google Scholar 

  • Schwarz EM, Tietz S, Froehlich JE (2018) Photosystem I-LHCII megacomplexes respond to high light and aging in plants. Photosynth Res 136:107–124

    CAS  PubMed  Google Scholar 

  • Shen J-R, Inoue Y (1993) Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12 kDa protein, in cyanobacterial photosystem II. Biochemistry 32:1825–1832

    CAS  PubMed  Google Scholar 

  • Shen J-R, Ikeuchi M, Inoue Y (1992) Stoichiometric association of extrinsic cytochrome c-550 and 12 kDa protein with a highly purified oxygen-evolving photosystem II core complex from Synechococcus vulcanus. FEBS Lett 301:145–149

    CAS  PubMed  Google Scholar 

  • Smith BM, Morrissey PJ, Guenther JE, Nemson JA, Harrison MA, Allen JF, Melis A (1990) Response of the photosynthetic apparatus in Dunaliella salina (green algae) to irradiance stress. Plant Physiol 93:1433–1440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian L et al (2017) Isolation and characterization of PSI–LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae. Photosynth Res 133:201–214

    CAS  PubMed  Google Scholar 

  • Ueno Y, Aikawa S, Kondo A, Akimoto S (2015) Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy. Photosynth Res 125:211–218

    CAS  PubMed  Google Scholar 

  • Wang W et al (2019) Structural basis for blue-green light-harvesting and energy dissipation in diatoms. Science 363:eaav0365

    CAS  PubMed  Google Scholar 

  • Watanabe M et al (2014) Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria. Proc Natl Acad Sci USA 111:2512–2517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe GR, Cunningham FX, Durnfordt D, Green BR, Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367:566–568

    CAS  Google Scholar 

  • Zhang J, Ma J, Liu D, Qin S, Sun S, Zhao J, Sui SF (2017) Structure of phycobilisome from the red alga Griffithsia pacifica. Nature 551:57–63

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFA0503700), National Natural Science Foundation of China grant (31470339), a Strategic Priority Research Program of CAS (XDB17000000), a Key Research Program of Frontier Sciences, CAS, Grant (QYZDY-SSW-SMC003), and a grant from The Innovative Academy for Seed Design, Chinese Academy of Sciences. This work was also partially supported by Natural Science Foundation of Hebei Province (C2020205051), Doctoral fund of Hebei Normal University (L2020B20), from the Hebei Collaboration Innovation Center for Cell Signaling, China (L. Tian).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ren Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Tian, L., Ma, F. et al. Regulation of photosystem I-light-harvesting complex I from a red alga Cyanidioschyzon merolae in response to light intensities. Photosynth Res 146, 287–297 (2020). https://doi.org/10.1007/s11120-020-00778-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00778-z

Keywords

Navigation