Skip to main content

Advertisement

Log in

Cisplatin promotes the expression level of PD-L1 in the microenvironment of hepatocellular carcinoma through YAP1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. However, the immune tolerance limits the effect of chemotherapeutic drugs. Therefore, the mechanism of cisplatin in promoting PD-L1 expression by YAP1 was investigated in the present study, and we found that cisplatin increased the expression level of YAP1 in the mouse liver with H22 cells. Meanwhile, cisplatin improved the expression level of PD-L1, IL-1β and CCL2 in the tumor microenvironment. Further, cisplatin also enhanced the expression level of YAP1 in shYAP1 HepG2215 cells. The expression of PD-L1 was decreased by Verteporfin, YAP1 inhibitor, during the treatment of DEN/TCPOBOP-induced liver cancer in C57BL/6 mice. These results suggested that cisplatin could deteriorate the immunosuppressive microenvironment through increasing PD-L1, CCL2, IL-1β by upregulated YAP1 expression. Therefore, the study suggested that YAP1 blockade destroyed the immunosuppressive microenvironment of cancer to improve the effect of chemotherapy in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Google Scholar 

  2. Falkson G, Ryan LM, Johnson LA, Simson IW, Coetzer BJ, Carbone PP, Creech RH, Schutt AJ (1987) A random phase II study of mitoxantrone and cisplatin in patients with hepatocellular carcinoma. An ECOG study. Cancer 60:2141–2145

    CAS  Google Scholar 

  3. Holditch SJ, Brown CN, Lombardi AM, Nguyen KN and Edelstein CL (2019) Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 20

  4. Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, Nuryadi E, Sekine R, Oike T, Kakoti S, Yoshimoto Y, Held KD, Suzuki Y, Kono K, Miyagawa K, Nakano T, Shibata A (2017) DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 8:017–01883

    Google Scholar 

  5. Yarchoan M, Xing D, Luan L, Xu H, Sharma RB, Popovic A, Pawlik TM, Kim AK, Zhu Q, Jaffee EM, Taube JM, Anders RA (2017) Characterization of the immune microenvironment in hepatocellular carcinoma. Clin Cancer Res 23:7333–7339

    CAS  Google Scholar 

  6. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou S, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413

    CAS  Google Scholar 

  7. Asaoka Y, Ijichi H, Koike K (2015) PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 373(20):1979

  8. Van Der Kraak L, Goel G, Ramanan K, Kaltenmeier C, Zhang L, Normolle DP, Freeman GJ, Tang D, Nason KS, Davison JM, Luketich JD, Dhupar R, Lotze MT (2016) 5-Fluorouracil upregulates cell surface B7–H1 (PD-L1) expression in gastrointestinal cancers. J Immunother Cancer 4:016–0163

    Google Scholar 

  9. Peng J, Hamanishi J, Matsumura N, Abiko K, Murat K, Baba T, Yamaguchi K, Horikawa N, Hosoe Y, Murphy SK, Konishi I, Mandai M (2015) Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-kappab to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res 75:5034–5045

    CAS  Google Scholar 

  10. Hansen CG, Moroishi T, Guan KL (2015) YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 25:499–513

    CAS  Google Scholar 

  11. Zanconato F, Cordenonsi M, Piccolo S (2016) YAP/TAZ at the Roots of Cancer. Cancer Cell 29:783–803

    CAS  Google Scholar 

  12. Young K, Tweedie E, Conley B, Ames J, FitzSimons M, Brooks P, Liaw L and Vary CP (2015) BMP9 crosstalk with the hippo pathway regulates endothelial cell matricellular and chemokine responses. PLoS One 10.

  13. Perra A, Kowalik MA, Ghiso E, Ledda-Columbano GM, Di Tommaso L, Angioni MM, Raschioni C, Testore E, Roncalli M, Giordano S, Columbano A (2014) YAP activation is an early event and a potential therapeutic target in liver cancer development. J Hepatol 61:1088–1096

    CAS  Google Scholar 

  14. Li YX, Li JH, Zhou DW (2017) Hippo signaling pathway in liver tissue homeostasis. Yi Chuan 39:607–616

    CAS  Google Scholar 

  15. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, Lanyon G, Martin M, Fraumeni JF Jr, Rabkin CS (2001) The role of interleukin-1 polymorphisms in the pathogenesis of gastric cancer. Nature 412:35083631

    Google Scholar 

  16. Lanaya H, Natarajan A, Komposch K, Li L, Amberg N, Chen L, Wculek SK, Hammer M, Zenz R, Peck-Radosavljevic M, Sieghart W, Trauner M, Wang H, Sibilia M (2014) EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat Cell Biol 16:972–977

    CAS  Google Scholar 

  17. Wu Y, Shen L, Liang X, Li S, Ma L, Zheng L, Li T, Yu H, Chan H, Chen C, Yu J, Jia J (2019) Helicobacter pylori-induced YAP1 nuclear translocation promotes gastric carcinogenesis by enhancing IL-1beta expression. Cancer Med 8:3965–3980

    CAS  Google Scholar 

  18. Kim W, Khan SK, Liu Y, Xu R, Park O, He Y, Cha B, Gao B, Yang Y (2018) Hepatic hippo signaling inhibits protumoural microenvironment to suppress hepatocellular carcinoma. Gut 67:1692–1703

    CAS  Google Scholar 

  19. Bergmann J, Muller M, Baumann N, Reichert M, Heneweer C, Bolik J, Lucke K, Gruber S, Carambia A, Boretius S, Leuschner I, Becker T, Rabe B, Herkel J, Wunderlich FT, Mittrucker HW, Rose-John S, Schmidt-Arras D (2017) IL-6 trans-signaling is essential for the development of hepatocellular carcinoma in mice. Hepatology 65:89–103

    CAS  Google Scholar 

  20. Li Z, Tuteja G, Schug J, Kaestner KH (2012) Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 148:72–83

    CAS  Google Scholar 

  21. Zhang H, Ramakrishnan SK, Triner D, Centofanti B, Maitra D, Gyorffy B, Sebolt-Leopold JS, Dame MK, Varani J, Brenner DE, Fearon ER, Omary MB and Shah YM (2015) Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci Signal 8.

  22. Sander B, Damm O, Gustafsson B, Andersson U, Hakansson L (1996) Localization of IL-1, IL-2, IL-4, IL-8 and TNF in superficial bladder tumors treated with intravesical bacillus Calmette-Guerin. J Urol 156:536–541

    CAS  Google Scholar 

  23. Matsumoto R, Tsuda M, Yoshida K, Tanino M, Kimura T, Nishihara H, Abe T, Shinohara N, Nonomura K and Tanaka S (2016) Aldo-keto reductase 1C1 induced by interleukin-1beta mediates the invasive potential and drug resistance of metastatic bladder cancer cells. Sci Rep 6.

  24. Szeto SG, Narimatsu M, Lu M, He X, Sidiqi AM, Tolosa MF, Chan L, De Freitas K, Bialik JF, Majumder S, Boo S, Hinz B, Dan Q, Advani A, John R, Wrana JL, Kapus A and Yuen DA (2016) YAP/TAZ Are Mechanoregulators of TGF-beta-Smad Signaling and Renal Fibrogenesis.

  25. Nazir T, Islam A, Omer MO, Mustafa M (2015) Lymphocytopenia; induced by vinorelbine, doxorubicin and cisplatin in human cancer patients. Breast Dis 35:1–4

    CAS  Google Scholar 

  26. Kim MH, Kim CG, Kim SK, Shin SJ, Choe EA, Park SH, Shin EC, Kim J (2018) YAP-induced PD-L1 expression drives immune evasion in BRAFi-resistant melanoma. Cancer Immunol Res 6:255–266

    CAS  Google Scholar 

  27. Hugo W, Shi H, Sun L, Piva M, Song C, Kong X, Moriceau G, Hong A, Dahlman KB, Johnson DB, Sosman JA, Ribas A, Lo RS (2015) Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162:1271–1285

    CAS  Google Scholar 

  28. Ma L, Cui J, Xi H, Bian S, Wei B, Chen L (2016) Fat4 suppression induces Yap translocation accounting for the promoted proliferation and migration of gastric cancer cells. Cancer Biol Ther 17:36–47

    CAS  Google Scholar 

  29. Ooki A, Pena MCDR, Marchionni L, Dinalankara W, Begum A, Hahn NM, VandenBussche CJ, Rasheed ZA, Mao S, Netto GJ, Sidransky D, Hoque MO (2018) YAP1 and COX2 coordinately regulate urothelial cancer stem-like cells. Cancer Res 78:168–181

    CAS  Google Scholar 

  30. Qin X, Liu C, Zhou Y and Wang G (2010) Cisplatin induces programmed death-1-ligand 1(PD-L1) over-expression in hepatoma H22 cells via Erk /MAPK signaling pathway. Cell Mol Biol 11:OL1366-72.

  31. Tran L, Allen CT, Xiao R, Moore E, Davis R, Park SJ, Spielbauer K, Van Waes C, Schmitt NC (2017) Cisplatin alters antitumor immunity and synergizes with PD-1/PD-L1 inhibition in head and neck squamous cell carcinoma. Cancer Immunol Res 5:1141–1151

    CAS  Google Scholar 

  32. Lee BS, Park DI, Lee DH, Lee JE, Yeo MK, Park YH, Lim DS, Choi W, Yoo G, Kim HB, Kang D, Moon JY, Jung SS, Kim JO, Cho SY, Park HS, Chung C (2017) Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun 491:493–499

    CAS  Google Scholar 

  33. Liu K, Du S, Gao P, Zheng J (2019) Verteporfin suppresses the proliferation, epithelial-mesenchymal transition and stemness of head and neck squamous carcinoma cells via inhibiting YAP1. J Cancer 10:4196–4207

    CAS  Google Scholar 

  34. Wang X, Wu B, Zhong Z (2018) Downregulation of YAP inhibits proliferation, invasion and increases cisplatin sensitivity in human hepatocellular carcinoma cells. Oncol Lett 16:585–593

    Google Scholar 

  35. Zhang Q, Wang H, Mao C, Sun M, Dominah G, Chen L, Zhuang Z (2018) Fatty acid oxidation contributes to IL-1beta secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Mol Immunol 94:27–35

    Google Scholar 

  36. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56:4625–4629

    CAS  Google Scholar 

  37. Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW (2009) A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE 4:0006562

    Google Scholar 

  38. Natoli R, Fernando N, Madigan M, Chu-Tan JA, Valter K, Provis J, Rutar M (2017) Microglia-derived IL-1beta promotes chemokine expression by Muller cells and RPE in focal retinal degeneration. Mol Neurodegener 12:017–0175

    Google Scholar 

  39. Wong J, Tran LT, Magun EA, Magun BE, Wood LJ (2014) Production of IL-1beta by bone marrow-derived macrophages in response to chemotherapeutic drugs: synergistic effects of doxorubicin and vincristine. Cancer Biol Ther 15:1395–1403

    CAS  Google Scholar 

  40. Lin EY, Pollard JW (2007) Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res 67:5064–5066

    CAS  Google Scholar 

  41. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    CAS  Google Scholar 

  42. She H, Nakazawa T, Matsubara A, Connolly E, Hisatomi T, Noda K, Kim I, Gragoudas ES, Miller JW (2008) Photoreceptor protection after photodynamic therapy using dexamethasone in a rat model of choroidal neovascularization. Invest Ophthalmol Vis Sci 49:5008–5014

    Google Scholar 

  43. Sampath S, Won H, Massarelli E, Li M, Frankel P, Vora N, Vora L, Maghami E, Kortylewski M (2018) Combined modality radiation therapy promotes tolerogenic myeloid cell populations and STAT3-related gene expression in head and neck cancer patients. Oncotarget 9:11279–11290

    Google Scholar 

  44. Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X, Wang H (2017) Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 66:157–167

    CAS  Google Scholar 

  45. Guo X, Zhao Y, Yan H, Yang Y, Shen S, Dai X, Ji X, Ji F, Gong XG, Li L, Bai X, Feng XH, Liang T, Ji J, Chen L, Wang H, Zhao B (2017) Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev 31:247–259

    CAS  Google Scholar 

  46. Levina V, Su Y, Nolen B, Liu X, Gordin Y, Lee M, Lokshin A, Gorelik E (2008) Chemotherapeutic drugs and human tumor cells cytokine network. Int J Cancer 123:2031–2040

    CAS  Google Scholar 

  47. Futakuchi A, Inoue T, Wei FY, Inoue-Mochita M, Fujimoto T, Tomizawa K, Tanihara H (2018) YAP/TAZ are essential for TGF-beta2-mediated conjunctival fibrosis. Invest Ophthalmol Vis Sci 59:3069–3078

    CAS  Google Scholar 

  48. Yu HX, Yao Y, Bu FT, Chen Y, Wu YT, Yang Y, Chen X, Zhu Y, Wang Q, Pan XY, Meng XM, Huang C, Li J (2019) Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Mol Immunol 107:29–40

    CAS  Google Scholar 

  49. Li M, Chen J, Yu X, Xu S, Li D, Zheng Q, Yin Y (2019) Myricetin Suppresses the Propagation of Hepatocellular Carcinoma via Down-Regulating Expression of YAP. Cells 8.

  50. Elaimy AL, Amante JJ, Zhu LJ, Wang M, Walmsley CS, FitzGerald TJ, Goel HL, Mercurio AM (2019) The VEGF receptor neuropilin 2 promotes homologous recombination by stimulating YAP/TAZ-mediated Rad51 expression. Proc Natl Acad Sci U S A 116:14174–14180

    CAS  Google Scholar 

  51. Cheng H, Zhang Z, Rodriguez-Barrueco R, Borczuk A, Liu H, Yu J, Silva JM, Cheng SK, Perez-Soler R, Halmos B (2016) Functional genomics screen identifies YAP1 as a key determinant to enhance treatment sensitivity in lung cancer cells. Oncotarget 7:28976–28988

    Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (81873112), the Project of Natural Fund of Hebei Province (H2017423011), Talent Project Training Funding Project of Hebei Province (A201902015), Hundred Outstanding Innovative Talents Support Program of Universities in Hebei Province (SLRC2019043), and the Research Fund from Hebei Key Laboratory of Integrative Medicine on Liver Kidney Patterns (A201904).

Author information

Authors and Affiliations

Authors

Contributions

XS designed research; SL, JJ, ZZ, QP, LH, YG, WZ, and QC performed the experiments; SL and XS wrote the manuscript with contributions from all authors. All authors read and approved the initial manuscript.

Corresponding author

Correspondence to Xinli Shi.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ji, J., Zhang, Z. et al. Cisplatin promotes the expression level of PD-L1 in the microenvironment of hepatocellular carcinoma through YAP1. Mol Cell Biochem 475, 79–91 (2020). https://doi.org/10.1007/s11010-020-03861-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03861-0

Keywords

Navigation