1 Introduction

Let k be a field, \(G_{k}\) the absolute Galois group of k, U an algebraic variety over k (i.e. a geometrically connected separated scheme of finite type over k) and \(\pi _{1}(U)\) the étale fundamental group of U.

When k is a number field or, more generally, a field finitely generated over the prime field, the following philosophy of anabelian geometry, which is sometimes called the Grothendieck conjecture, was advocated by A.Grothendieck.

When U is an “anabelian variety", the geometry of U can be recovered group-theoretically from \(\pi _{1}(U)\twoheadrightarrow G_{k}\).

When k is an algebraically closed field of characteristic 0 and U is a curve (i.e. an integral separated regular scheme of finite type over k and of dimension 1), the isomorphism class of \(\pi _{1}(U)\) as a topological group can be recovered group-theoretically from the cardinality of cusps of U and the genus of U. Therefore the isomorphism class of U as a scheme cannot be recovered group-theoretically only from \(\pi _{1}(U)\).

When k is an algebraically closed field of characteristic \(p > 0\), the isomorphism class of \(\pi _{1}(U)\) cannot be recovered from easy invariants such as the cardinality of cusps or the genus. Thus, we can even consider the following problem.

Is the isomorphism class of U as a scheme recovered group-theoretically only from \(\pi _{1}(U)\) ?

Regarding this problem, various results are known (cf. [4, 5, 7, 8, 11, 12]). Among others, the following theorem is known.

Theorem 1.1

([11] Theorem 3.5) Let k be an algebraically closed field of characteristic \(p > 0\), U a curve over k, \(F \subset k\) the algebraic closure of \({\mathbb {F}}_{p}\), \(U_{0}\) a curve over F and \(X_{0}\) a smooth compactification of \(U_{0}\). Assume that the genus of \(X_{0}\) is 0. Then

$$\begin{aligned} \pi _{1} (U) \simeq \pi _{1} (U_{0}\times _{F}k) \Leftrightarrow U \simeq U_{0}\times _{F}k \ (as \ a \ scheme) \end{aligned}$$

\(\square \)

The main result of the present paper is the following generalization of Theorem 1.1.

Theorem 1.2

(Theorem 4.9) Let k be an algebraically closed field of characteristic \(p \ne 0 , 2\), U a curve over k, \(F \subset k\) the algebraic closure of \({\mathbb {F}}_{p}\), \(U_{0}\) a curve over F and \(X_{0}\) a smooth compactification of \(U_{0}\). Assume that the genus of \(X_{0}\) is 1 and that the cardinality of \(X_{0}\backslash U_{0}\) is 1. Then

$$\begin{aligned} \pi _{1} (U) \simeq \pi _{1} (U_{0}\times _{F}k) \Leftrightarrow U \simeq U_{0}\times _{F}k \ ( as \ a \ scheme) \end{aligned}$$

In the second section, we will review the reconstruction of various invariants by \(\pi _{1}(U)\), which will be used in the later sections.

In the third section, U is assumed to be an open subscheme of an elliptic or hyperelliptic curve. We will prove that linear relations of the images of cusps in \({\mathbb {P}}^{1}\) are encoded in \(\pi _{1}(U)\) and a certain closed subgroup \(L_{U} \subset \pi _{1}(U)\) (see the third section for the definition of \(L_{U}\)).

In the fourth section, U is assumed to be a curve of (1,1)-type. At first we will prove that we can apply the main theorem of the third section to certain étale covers of U. Then we will prove that the isomorphism class of U as a scheme is determined only by \(\pi _{1}(U)\).

2 The reconstruction of various invariants ([11] §1,§2)

In this section, we will review the reconstruction of various invariants that was shown in [11].

The theorems in the first section are about curves of genus 0 or 1, while the theorems in this section are about curves of arbitrary genus.

Let k be an algebraically closed field of characteristic \(p > 0\), U a curve over k (i.e. an integral separated regular scheme of finite type over k and of dimension 1), F the algebraic closure of \({\mathbb {F}}_{p}\) in k.

Definition

(i):

Let \(\pi _{1}(U)\) be the étale fundamental group of U, \(U_{H}\) the étale cover of U that corresponds to an open subgroup \(H \subset \pi _{1}(U)\), \(X=U^{cpt}\) the smooth compactification of U, g(X) the genus of X, \(S_{U}=X\backslash U\) the complement of U in X, \(n_{U}\) the cardinality of \(S_{U}\), K the function field of U, \(K^{sep}\) a separable closure of K, \({\tilde{K}}\) the maximal Galois extension of K in \(K^{sep}\) that is unramified over U, \({\tilde{X}}\) the normalization of X in \({\tilde{K}}\), \({\tilde{S}}_{U}\) the inverse image of \(S_{U}\) under \({\tilde{X}} \rightarrow X\), \(I_{{\tilde{P}}}\) the inertia subgroup in \(\pi _{1}(U)\) associated to \({\tilde{P}} \in {\tilde{S}}_{U}\), \(I_{{\tilde{P}}}^{wild}\) the Sylow p-subgroup of \(I_{{\tilde{P}}}\), \(I_{{\tilde{P}}}^{tame} {\mathop {=}\limits ^{def}}I_{{\tilde{P}}} / I^{wild}_{{\tilde{P}}}\),

$$\begin{aligned}&Sub(\pi _{1}(U)){\mathop {=}\limits ^{def}}\{ H \subset \pi _{1}(U) | \ H \ \mathrm{is\ a\ closed\ subgroup}\},\\&({\mathbb {Q}}/{\mathbb {Z}})' {\mathop {=}\limits ^{def}}\{ a \in {\mathbb {Q}}/{\mathbb {Z}} \ | \ \mathrm{the \ order \ of} \ a \ \mathrm{is \ prime \ to} \ p \} \end{aligned}$$

and

$$\begin{aligned} F_{{\tilde{P}}} {\mathop {=}\limits ^{def}}(I^{tame}_{{\tilde{P}}} \otimes _{{\mathbb {Z}}}({\mathbb {Q}}/{\mathbb {Z}})')\coprod \{ *\} \end{aligned}$$

\((\{ *\}\) means one point set, \({\tilde{P}} \in {\tilde{S}}_{U}\)).

(ii):

Suppose \({\mathcal {F}}(U)\) and \({\mathcal {G}}(U)\) are an additional structure on U. We say that \({\mathcal {F}}(U)\) can be recovered group-theoretically from \(\pi _{1}(U)\) (resp. \(\pi _{1}(U)\) and \({\mathcal {G}}(U)\)) if any isomorphism \(\pi _{1}(U_{1})\simeq \pi _{1}(U_{2})\) (resp. \(\pi _{1}(U_{1})\simeq \pi _{1}(U_{2})\) that induces \({\mathcal {G}}(U_{1}) \simeq {\mathcal {G}}(U_{2})\)) induces \({\mathcal {F}}(U_{1})\simeq {\mathcal {F}}(U_{2})\).

Theorem 2.1

([11] §1,§2) From \(\pi _{1}(U)\)

  • \((g(X),n_{U})\) can be recovered group-theoretically.

  • When \((g(X),n_{U})\ne (0,0)\), p can be recovered group-theoretically.

  • \(\pi _{1}(X)\) can be recovered group-theoretically as a quotient group of \(\pi _{1}(U)\).

  • \({\tilde{S}}_{U}\) can be recovered group-theoretically as a subset of \(Sub(\pi _{1}(U))\). More precisely, \({\tilde{S}}_{U}\) can be identified with a subset of \(Sub(\pi _{1}(U))\) via \({\tilde{S}}_{U} \rightarrow Sub(\pi _{1}(U))\), \({\tilde{P}}\rightarrow I_{{\tilde{P}}}\), and this subset can be recovered group-theoretically.

  • \(S_{U}\) can be recovered group-theoretically as a quotient set of \({\tilde{S}}_{U}\).

  • For any \({\tilde{P}}\in {\tilde{S}}_{U}\), the field structure of \(F_{{\tilde{P}}}\) obtained by identifying \(F_{{\tilde{P}}}\) with F (see [11] the argument before Proposition 2.8) can be recovered group-thoretically.

\(\square \)

Definition

(i):

For any set (resp. group) S and ring R, R[S] stands for the free R-module with basis S (resp. the group ring of S over R).

(ii):

Set \(I = I_{{\tilde{P}}}\). Let d be any positive integer. We define \(\chi _{I,d}\) as follows

$$\begin{aligned} \chi _{I,d} \ : \ I \twoheadrightarrow I^{tame}/(p^{d}-1)=I^{tame}\otimes _{{\mathbb {Z}}} \frac{1}{p^{d}-1}{\mathbb {Z}}/{\mathbb {Z}} \hookrightarrow F_{{\tilde{P}}}^{\times } \end{aligned}$$

When we identify \(F_{{\tilde{P}}}^{\times }\) with \(F^{\times }\), \(\chi _{I,d}\) coincides with the following character

$$\begin{aligned} I \ni \gamma \mapsto \gamma \left( \pi ^{\frac{1}{p^{d}-1}}\right) /\pi ^{\frac{1}{p^{d}- 1}} \in F^{\times } \end{aligned}$$

where \(\pi \in {\mathcal {O}}_{X,P}\) stands for a prime element.

(iii):

Let \(M = M_{U}\) be an \({\mathbb {F}}_{p}[\pi _{1}(U)]\)-module depending functorially on U. Then for any \({\tilde{P}}\in {\tilde{S}}_{U}\), \(i \in {\mathbb {Z}}\) and \(d\in {\mathbb {Z}}_{> 0}\), we define \(M(\chi _{I_{{\tilde{P}}},d}^{i})\) as the following.

$$\begin{aligned} M(\chi _{I_{{\tilde{P}}},d}^{i}){\mathop {=}\limits ^{def}}\{ x\in M\otimes _{{\mathbb {F}}_{p}}F_{{\tilde{P}}}\ | \ \gamma x = \chi _{I_{{\tilde{P}}},d}^{i}(\gamma )x \ (\gamma \in I_{{\tilde{P}}}) \} \end{aligned}$$

Corollary 2.2

([11] Corollary 2.11) \((M(\chi _{I_{{\tilde{P}}},d}^{i}))_{{\tilde{P}}\in {\tilde{S}}_{U}}\) can be recovered group-theoretically from \(\pi _{1}(U)\). \(\square \)

3 Linear relations of the images of cusps in \({\mathbb {P}}^{1}\)

In this section, we will use the same symbols as in the previous sections, and we assume that \(p \ne 0,2\) and that X is an elliptic or hyperelliptic curve.

We will prove that linear relations of the images of cusps in \({\mathbb {P}}^{1}\) are encoded in \(\pi _{1}(U)\) and a certain closed subgroup \(L_{U} \subset \pi _{1}(U)\).

Let \(x : X \rightarrow {\mathbb {P}}^{1}\) be a finite morphism of degree 2, \(T_{U}{\mathop {=}\limits ^{def}}x(S_{U})\),

$$\begin{aligned} \lambda _{0},\lambda _{\infty },\lambda _{1}, \lambda _{2},\ldots ,\lambda _{m} \in X \end{aligned}$$

the ramified points of x and

$$\begin{aligned} P_{i} {\mathop {=}\limits ^{def}}x(\lambda _{i}) \in {\mathbb {P}}^{1}\ (i = 0, \infty , 1, 2, \ldots , m). \end{aligned}$$

(By Hurwitz’s formula, m is an even number.) In this section, we assume that

$$\begin{aligned}&\lambda _{0},\lambda _{\infty },\lambda _{1},\lambda _{2},\ldots ,\lambda _{m} \in S_{U},\\&S_{U} \backslash \{ \lambda _{0},\lambda _{\infty },\lambda _{1},\lambda _{2},\ldots ,\lambda _{m}\} \ne \emptyset \end{aligned}$$

and

$$\begin{aligned} x^{-1}(T_{U})=S_{U}. \end{aligned}$$

Let

$$\begin{aligned} \mu _{(1,1)},\mu _{(1,2)},\mu _{(2,1)},\ldots ,\mu _{(l,1)}, \mu _{(l,2)} \end{aligned}$$

be the unramified points of x in \(S_{U}\) (\(\mu _{(i,1)}\) is conjugate with \(\mu _{(i,2)}\)),

$$\begin{aligned} R_{i} {\mathop {=}\limits ^{def}}x(\mu _{(i,1)})=x( \mu _{(i,2)}) \in T_{U}\ (i = 1,2, \ldots , l) . \end{aligned}$$

Set

$$\begin{aligned}&S_{U,unr} {\mathop {=}\limits ^{def}}\{ \mu _{(1,1)},\mu _{(1,2)},\mu _{(2,1)},\ldots ,\mu _{(l,1)} , \mu _{(l,2)} \},\\&S_{U,ram} {\mathop {=}\limits ^{def}}\{ \lambda _{0},\lambda _{\infty },\lambda _{1}, \lambda _{2},\ldots ,\lambda _{m} \},\\&T_{U,unr} {\mathop {=}\limits ^{def}}\{ R_{1},R_{2},\ldots ,R_{l} \},\\&T_{U,ram} {\mathop {=}\limits ^{def}}\{ P_{0},P_{\infty },P_{1},P_{2},\ldots , P_{m} \}. \end{aligned}$$

Let \(I_{{\tilde{\lambda }}} \subset \pi _{1}(U) \) be the inertia group corresponding to \({\tilde{\lambda }} \in {\tilde{X}}\), \(I_{{\tilde{\lambda }},{\mathbb {P}}^{1}} \subset \pi _{1}({\mathbb {P}}^{1} \backslash T_{U})\) be the inertia group corresponding to \({\tilde{\lambda }} \in \tilde{{\mathbb {P}}}^{1}\) (Here, \(\tilde{{\mathbb {P}}}^{1}\) stands for the integral closure of \({\mathbb {P}}^{1}\) in \({\tilde{K}}\). By definition, \({\tilde{X}}=\tilde{{\mathbb {P}}}^{1}\)).

Set

$$\begin{aligned} Q {\mathop {=}\limits ^{def}}\pi _{1}({\mathbb {P}}^{1} \backslash T_{U})^{ab,p'} \end{aligned}$$

(the maximal pro-prime-to-p abelian quotient of \(\pi _{1}({\mathbb {P}}^{1}\backslash T_{U}\))),

$$\begin{aligned} L_{U} {\mathop {=}\limits ^{def}}ker(\pi _{1}(U) \rightarrow \pi _{1}({\mathbb {P}}^{1} \backslash T_{U}) \rightarrow Q) \end{aligned}$$

and

$$\begin{aligned} Q_{U} {\mathop {=}\limits ^{def}}\pi _{1}(U)/L_{U}. \end{aligned}$$

When X is a hyperelliptic curve, x is the unique finite morphism of degree 2 (up to isomorphism of \({\mathbb {P}}^{1}\), see [2] IV Propotition 5.3). When X is an elliptic curve, x is not unique (therefore, \(T_{U},\)Q\(L_{U},\)\(Q_{U},\)\(S_{U,unr},\)\(T_{U,unr},\)\(\lambda _{0},\)\(P_{0},\)\(\mu _{(1,1)},\)\(R_{1}\), etc., depend on the choice of x). In this section, we assume that x is fixed.

Proposition 3.1

\(S_{U,ram}, \ S_{U,unr}, \ T_{U}, \ T_{U,ram}, \ T_{U,unr}, \ Q\) and the natural injective map \(Q_{U}\hookrightarrow Q\) can be recovered group-theoretically from \(\pi _{1}(U)\) and \(L_{U}\).

Proof

For each \(\lambda \in S_{U}\), we fix \({\tilde{\lambda }} \in {\tilde{S}}_{U}\) above \(\lambda \). We define an equivalence relation \(\sim \) on \(S_{U}\) by saying \(\nu \sim \lambda \) if \(I_{{\tilde{\nu }}}/(I_{{\tilde{\nu }}} \cap L_{U}) = I_{{\tilde{\lambda }}}/(I_{{\tilde{\lambda }}} \cap L_{U})\) (as subsets of \(Q_{U}\)). We can identify \(T_{U}\) with \(S_{U}/\sim \) (see the proof of [11] Lemma 2.1). \(S_{U,unr} = \{ \lambda \in S_{U} |\) there exists \(\nu \in S_{U} \backslash \{ \lambda \}\) such that \(\lambda \sim \nu \) }, \(S_{U,unr}\) and \(S_{U,ram}\) are recovered from \(\pi _{1}(U)\) and \(L_{U}\). As \(T_{U,ram}\) (resp. \(T_{U,unr})\) is the image of \(S_{U,ram}\) (resp. \(S_{U,unr})\), \(T_{U,ram}\) and \(T_{U,unr}\) are recovered from \(\pi _{1}(U)\) and \(L_{U}\).

Via the exact sequence \(0\rightarrow Q_{U} \rightarrow Q \rightarrow {\mathbb {Z}}/2{\mathbb {Z}}\), we can regard Q as subset of \(\frac{1}{2}Q_{U}\). By G.A.G.A theorems ([1] Exposé 12 , Exposé 13)

$$\begin{aligned} \begin{aligned}&Q\simeq (\oplus _{P\in T_{U}}I^{tame}_{{\tilde{P}},{\mathbb {P}}^{1}})/\varDelta \ , \ I^{tame}_{{\tilde{P}},{\mathbb {P}}^{1}}\simeq \hat{{\mathbb {Z}}}^{p'} \ , \ \varDelta \simeq \hat{{\mathbb {Z}}^{p'}} \\&I_{{\tilde{\lambda }},{\mathbb {P}}^{1}}^{tame}/I_{{\tilde{\lambda }}}^{tame} \simeq {\mathbb {Z}}/2{\mathbb {Z}} \ ( \lambda \in S_{U,ram}) \ , \ I_{{\tilde{\lambda }},{\mathbb {P}}^{1}}^{tame}/I_{{\tilde{\lambda }}}^{tame} = 0 \ ( \lambda \in S_{U,unr}) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&Q_{U} \simeq \left( \left( \oplus _{P \in T_{U,ram}}I^{tame}_{{\tilde{P}},{\mathbb {P}}^{1}}\right) ^{*}+ \left( \sum _{P \in T_{U,unr}} I^{tame}_{{\tilde{P}},{\mathbb {P}}^{1}}\right) \right) \\&\left( \left( \oplus _{\lambda \in T_{U,ram}}I^{tame}_{{\tilde{P}},{\mathbb {P}}^{1}}\right) ^{*} {\mathop {=}\limits ^{def}}ker\left( \left( \oplus _{\lambda \in T_{U,ram}}I^{tame}_{{\tilde{P}},{\mathbb {P}}^{1}}\right) \twoheadrightarrow \oplus {\mathbb {Z}}/2{\mathbb {Z}} {\mathop {\twoheadrightarrow }\limits ^{sum}} {\mathbb {Z}}/2{\mathbb {Z}}\right) \right) \end{aligned} \end{aligned}$$

therefore

$$\begin{aligned} Q \simeq \left( \sum _{P \in T_{U,ram}} \frac{1}{2}I_{{\tilde{P}}}^{tame}\right) + \left( \sum _{P \in T_{U,unr}} I_{{\tilde{P}}}^{tame}\right) \subset \frac{1}{2}Q_{U} \end{aligned}$$

By identifying Q with the right-hand side of this isomorphism, we obtain \(Q_{U}\hookrightarrow Q\).

\(\square \)

We will use the following lemma in the proof of Theorem 3.3.

Lemma 3.2

Let p be an odd prime number, m an even non-negative integer and l a non-negative integer such that \((m,l) \ne (0,0)\).

  1. (a)

    For any \(a_{1},\ldots , a_{m},b_{1},\ldots , b_{l}\in \{ 0,1,\ldots ,p-1 \}\) , \(e_{1},\ldots ,e_{m} , f_{1},\ldots ,f_{l} \in {\mathbb {Z}}_{>0}\) with \(p \not \mid (\prod _{i=1}^{m}e_{i})(\prod _{j=1}^{l}f_{j})\) and \(\alpha _{1},\ldots ,\alpha _{m},\beta _{1},\ldots ,\beta _{l}\in {\mathbb {Z}}\). Then, there exist \(d_{0} ,{\tilde{a}}_{1},\ldots ,{\tilde{a}}_{m},{\tilde{b}}_{1},\ldots ,{\tilde{b}}_{l} \in {\mathbb {Z}}_{> 0}\) such that, for any \(d \in {\mathbb {Z}}\) such that \(d \ge d_{0}\), we have (i), (ii), (iii)

    $$\begin{aligned} \begin{aligned} \mathrm{(i)}&\ {\tilde{c}} \equiv c \ mod \ p \ \ (c=a_{1},\ldots , a_{m},b_{1},\ldots , b_{l})\\ \mathrm{(ii)}&\ {\tilde{a}}_{i} \equiv \alpha _{i} \ mod \ e_{i}\ ,\ {\tilde{b}}_{j} \equiv \beta _{j} \ mod \ f_{j} \ \ (1\le i\le m\ ,\ 1 \le j \le l) \\ \mathrm{(iii)}&\ \mathrm{For \ all } \ q,t,\delta _{1 },\ldots , \delta _{m},\epsilon _{1},\ldots ,\epsilon _{l}\in {\mathbb {Z}} \ s.t. \ 0 \le q \le \frac{m}{2} \ ,0 \le t \le \frac{m}{2}\ , \\&0 \le \delta _{i} \le {\tilde{a}}_{i}+\frac{p^{d}-1}{2} \ , \ 0 \le \epsilon _{j} \le {\tilde{b}}_{j} \ \mathrm{and }\\&\ \sum _{i} \delta _{i}+\sum _{j} \epsilon _{j}=\frac{p^{d}-1}{2}+s-q+tp^{d}\ ,\\&we \ have \ \prod _{i,j} \left( {\begin{array}{c}{\tilde{a}}_{i}+\frac{p^{d}-1}{2}\\ \delta _{i}\end{array}}\right) \left( {\begin{array}{c}\tilde{b_{j}}\\ \epsilon _{j}\end{array}}\right) \equiv 0 \ { mod }\ p \end{aligned} \end{aligned}$$
  2. (b)

    Assume, moreover, that \(l \ne 0\) and \((m,l) \ne (0,1)\). Then, for any \(a_{1},\ldots , a_{m}\), \(b_{1},\ldots , b_{l} \in \{ 0,1,\ldots ,p-1 \}\), there exist \(d,{\tilde{a}}_{1},\ldots ,{\tilde{a}}_{m},{\tilde{b}}_{1},\ldots ,{\tilde{b}}_{l} \in {\mathbb {Z}}_{>0}\) which satisfy (i), (iii), (iv), (v), (vi).

    $$\begin{aligned} \begin{aligned} (iv)&\ p^{d} > 4s \ \ \left( s {\mathop {=}\limits ^{def}}\sum _{c=a_{1},\ldots , a_{m},b_{1},\ldots , b_{l}} {\tilde{c}}\right) \\ (v)&\ 2 | \frac{p^{d}-1}{(p^{d}-1,{\tilde{c}})} \ , \ 2 | \frac{p^{d}-1}{(p^{d}-1,s-1)} \ \ (c = a_{1},\ldots , a_{m},b_{1},\ldots , b_{l})\\ (vi)&\ (p^{d}-1,\tilde{b_{1}})=1\\ \end{aligned} \end{aligned}$$

Proof

We take any \(u\in {\mathbb {Z}}\) such that

$$\begin{aligned} \begin{aligned}&p^{u}>2\left( \sum _{i}a_{i}+\sum _{j}b_{j}+\frac{m}{2}p+\left( \sum _{i}e_{i} +\sum _{j}f_{j}\right) p\right) -1\\&\quad \left( \iff p^{u}>\left( \sum _{i}a_{i}+\sum _{j}b_{j}+\frac{m}{2}p\right. \right. \\&\quad \left. \left. +\left( \sum _{i}e_{i}+\sum _{j}f_{j}\right) p\right) +\left( \sum _{h=0}^{u-1}\frac{p-1}{2}p^{h}\right) \right) \end{aligned} \end{aligned}$$

and set \(d_{0} {\mathop {=}\limits ^{def}}u+3\). We define \({\tilde{a}}_{1},\ldots ,{\tilde{a}}_{m},{\tilde{b}}_{1},\ldots ,{\tilde{b}}_{l}\) to be the unique integers that satisfy (ii) and the following condition.

$$\begin{aligned} \begin{aligned} {\tilde{a}}_{i}&= a_{i}+\frac{p+1}{2}p+\sum _{h=2}^{u}\frac{p-1}{2}p^{h}+A_{i}p \ \ (1\le A_{i} \le e_{i})\\ {\tilde{b}}_{j}&= b_{j}+B_{j}p \ \ (1\le B_{j}\le f_{j}) \end{aligned} \end{aligned}$$

Then for any \(d\ge d_{0}\), we have

$$\begin{aligned} \begin{aligned}&s=\sum _{i}a_{i}+\sum _{j}b_{j}+\frac{m}{2}p+\frac{m}{2}p^{u+1}+D \\&\qquad \left( \left( m+l\right) p \le D {\mathop {=}\limits ^{def}}\left( \sum _{i}A_{i}p\right) + \left( \sum _{j}B_{j}p\right) \le \left( \sum _{i}e_{i}+\sum _{j}f_{j}\right) p\right) \\&\qquad {\tilde{a}}_{i}+\frac{p^{d}-1}{2}=a_{i}+\frac{p-1}{2} +\frac{p+1}{2}p^{u+1}+\left( \sum _{h=u+2}^{d-1}\frac{p-1}{2}p^{h}\right) +A_{i}p\\&\qquad \frac{p^{d}-1}{2}+s-q+tp^{d} \\&\quad = \left( \sum _{i}a_{i}+\sum _{j}b_{j}+\frac{m}{2}p+D-q\right) \\&\qquad +\left( \sum _{h=0}^{d-1}\frac{p-1}{2}p^{h}\right) +\frac{m}{2}p^{u+1}+tp^{d} \end{aligned} \end{aligned}$$

Let \(\sum _{g}a_{(i,g)}p^{g} \ , \ \sum _{g}b_{(j,g)}p^{g} \ , \ \sum _{g}\delta _{(i,g)}p^{g} \ , \ \sum _{g}\epsilon _{(j,g)}p^{g} \ \ (a_{(i,g)},b_{(j,g)},\delta _{(i,g)},\epsilon _{(j,g)}\)\(\in \{0,1,\ldots , p-1\})\) be the p-adic expansions of \({\tilde{a}}_{i}+\frac{p^{d}-1}{2}, \ {\tilde{b}}_{j}, \ \delta _{i}, \ \epsilon _{j}\), respectively.

At first, suppose either that there exist \(i\in \{1,2,\ldots ,m\} , g\in \{0,1,\ldots ,u-1\}\) such that \(b_{(j,g)} < \epsilon _{(j,g)}\), or that there exist \( j\in \{1,2,\ldots ,l\} , g\in \{0,1,\ldots ,u-1\}\) such that \(b_{(j,g)} < \epsilon _{(j,g)}\). By Lucas’ theorem ([3]),

$$\begin{aligned} \left( {\begin{array}{c}{\tilde{a}}_{i}+\frac{p^{d}-1}{2}\\ \delta _{i}\end{array}}\right) \equiv 0 \ mod \ p \ \ \mathrm{or} \ \ \left( {\begin{array}{c}{\tilde{b}}_{j}\\ \epsilon _{j}\end{array}}\right) \equiv 0 \ mod \ p \end{aligned}$$

therefore we have (iii).

Next, suppose that \(a_{(i,g)} \ge \delta _{(i,g)}\) and \(b_{(j,g)}\ge \epsilon _{(j,g)}\) hold for any \(i\in \{1,2,\ldots ,m\} , j\in \{1,2,\ldots ,l\} , g\in \{0,1,\ldots ,u-1\}\). Then we have

$$\begin{aligned} p^{u}> & {} \sum _{i}a_{i}+\sum _{j}b_{j}+\frac{m}{2}\left( p-1\right) +D\\\ge & {} \left( \sum _{i}\sum _{g=0}^{u-1}\delta _{\left( i,g\right) } p^{g}\right) +\left( \sum _{j}\sum _{g=0}^{u-1}\epsilon _{\left( j,g\right) }p^{g}\right) \end{aligned}$$

Let \(\eta \) be the uth coefficient of the p-adic expansion of \((\sum _{i}\delta _{i})+(\sum _{j}\epsilon _{j})=\frac{p^{d}-1}{2}+s-q+tp^{d}\). Then \(\eta \) satisfies \(\eta \equiv \sum _{i}\delta _{(i,u)}+\sum _{j}\epsilon _{(j,u)} \ mod \ p\). And we have

$$\begin{aligned} p^{u}> \left( \sum _{i}a_{i}+\sum _{j}b_{j}+\frac{m}{2}p+D-q\right) +\left( \sum _{h=0}^{u-1}\frac{p-1}{2}p^{h}\right) \end{aligned}$$

Then we have \(\eta = \frac{p-1}{2}\). Therefore there exists \(i\in \{ 1,2,\ldots ,m \}\) such that \(\delta _{(i,u)} \ne 0\) or there exists \( j \in \{ 1,2,\ldots ,l \}\) such that \(\epsilon _{(j,u)} \ne 0\).

On the other hand, any \(i \in \{ 1,2\ldots ,m \}\) satisfies

$$\begin{aligned} p^{u}> a_{i}+\frac{p-1}{2}+A_{i}p \end{aligned}$$

Therefore we have \(a_{(i,u)}=0\). It is clear that any j satisfies \(b_{(j,u)}=0\). By Lucas’s theorem ([3]),

$$\begin{aligned} \left( {\begin{array}{c}{\tilde{a}}_{i}+\frac{p^{d}-1}{2}\\ \delta _{i}\end{array}}\right) \equiv 0 \ mod \ p \ \ or \ \ \left( {\begin{array}{c}{\tilde{b}}_{j}\\ \epsilon _{j}\end{array}}\right) \equiv 0 \ mod \ p \end{aligned}$$

Thus, in both cases, we have (iii). By definition of \({\tilde{a}}_{1},\ldots ,{\tilde{a}}_{m},{\tilde{b}}_{1},\ldots ,{\tilde{b}}_{l}\), we have (i), (ii). This proves (a).

Next, we will prove (b).

  • Suppose \(b_{1}=0\)

We set \(f_{1}=1\) and take any \(e_{1},\ldots ,e_{m} , f_{2},\ldots ,f_{l} , \alpha _{1},\ldots ,\alpha _{m},\beta _{1},\ldots ,\beta _{l}\) that satisfy \(p \not \mid (\prod _{i=1}^{m}e_{i})(\prod _{j=1}^{l}f_{j})\). We apply (a) to them. By the proof of the first half of the lemma, we can take \({\tilde{b}}_{1}=p\). We can take a sufficiently large d that satisfies (v), because \(p \ne 2\). Therefore we can take d that satisfies (iv), (v) and (vi).

  • Suppose \(b_{1}\ne 0\) and \(l \equiv 0\ mod \ 2\).

By Dirichlet’s theorem on arithmetic progressions, there exists \(N \in {\mathbb {Z}}_{>0}\) such that \(b_{1}+p+Np^{2} \) is a prime number. We take

$$\begin{aligned}&f_{1}=1+Np, \ \beta _{1}=b_{1},\\&e_{1}=e_{2}= \cdots =e_{m}=f_{2}=\cdots =f_{l}=2, \\&\alpha _{1}=\cdots =\alpha _{m}=\beta _{2}=\cdots =\beta _{l}=1. \end{aligned}$$

We apply the first half of the lemma to them. By the proof of the first half of the lemma, we can take \({\tilde{b}}_{1}=b_{1}+p+Np^{2}\). Then \({\tilde{b}}_{1}\) is a prime number and \({\tilde{b}}_{1}\ge 1+p+p^{2}\), in particular \((p^{2}-p,{\tilde{b}}_{1})=1\). Any \(d\ge d_{0}\) satisfies (v), because \({\tilde{a}}_{1},\ldots ,{\tilde{a}}_{m},{\tilde{b}}_{1},\ldots ,{\tilde{b}}_{l},s-1\) are odd numbers. Thus, if we take sufficiently large d that satisfies (iv), \(d,{\tilde{a}}_{1},\ldots ,{\tilde{a}}_{m},{\tilde{b}}_{1},\ldots ,{\tilde{b}}_{l}\) satisfy \((i),(iii)\sim (v)\). If \({\tilde{b}}_{1} \not \mid p^{d}-1\), then we also have (vi). If \({\tilde{b}}_{1} | p^{d}-1\) (i.e. (vi) is not satisfied), we have

$$\begin{aligned} p^{d+1}-1=(p-1)(p^{d}+(p^{d-1}+\cdots +p+1))\equiv (p-1)p^{d} \ mod \ {\tilde{b}}_{1}. \end{aligned}$$

Hence \(d+1, {\tilde{a}}_{1}, \ldots ,{\tilde{a}}_{m},{\tilde{b}}_{1},\ldots ,{\tilde{b}}_{l}\) satisfy \((i),(iii)\sim (vi)\).

  • Suppose \(b_{1}\ne 0\) and \(l \equiv 1 \ mod \ 2\).

By assumption, we have \(m \ne 0\) or \(l\ge 3\). Suppose \(l\ge 3\) (resp. \(m\ne 0\)). By Dirichlet’s theorem on arithmetic progressions, there exists \(N \in {\mathbb {Z}}_{>0}\) such that \(b_{1}+p+Np^{2} \) is a prime number. We take

$$\begin{aligned}&f_{1}=1+Np, \ \beta _{1}=b_{1}, f_{2}=4, \ \beta _{2}=2, \\&e_{1}=\cdots =e_{m}=f_{3}=\cdots =f_{l}=2,\\&\alpha _{1}=\cdots =\alpha _{m}=\beta _{3}=\cdots =\beta _{l}=1 \end{aligned}$$

(resp.

$$\begin{aligned}&f_{1}=1+Np, \ \beta _{1}=b_{1}, \ e_{1}=4, \ \alpha _{1}=2, \\&e_{2}=\cdots =e_{m}=f_{2}=\cdots =f_{l}=2 , \\&\alpha _{2}=\cdots =\alpha _{m}=\beta _{2}=\cdots =\beta _{l}=1). \end{aligned}$$

We apply the first half of the lemma to them. By the proof of the first half of the lemma, we can take \({\tilde{b}}_{1}=b_{1}+p+Np^{2}\). Then \({\tilde{b}}_{1}\) is a prime number and \({\tilde{b}}_{1}\ge 1+p+p^{2}\), in particular \((p^{3}-p,{\tilde{b}}_{1})=1\). \({\tilde{a}}_{1},\ldots ,{\tilde{a}}_{m},{\tilde{b}}_{1},\ldots ,{\tilde{b}}_{l},s-1\) are odd numbers except \({\tilde{b}}_{2}\) (resp. \({\tilde{a}}_{1})\), and \({\tilde{b}}_{2}\) (resp. \({\tilde{a}}_{1})\equiv 2 \ mod \ 4\). Hence all \(d \in 2{\mathbb {Z}}_{>0}\) satisfy (v). Thus, if we take sufficiently large d that satisfies (iv), \(d,{\tilde{a}}_{1},\ldots ,{\tilde{a}}_{m},{\tilde{b}}_{1},\ldots ,{\tilde{b}}_{l}\) satisfy \((i),(iii)\sim (v)\). If \({\tilde{b}}_{1} \not \mid p^{d}-1\), then we also have (vi). If \({\tilde{b}}_{1}|p^{d}-1\), then we have

$$\begin{aligned} p^{d+2}-1= & {} (p-1)(p^{d}(p+1)+(p^{d-1}+\cdots +p+1)) \\\equiv & {} (p-1)(p^{d}(p+1)) \ mod \ {\tilde{b}}_{1}. \end{aligned}$$

Hence \(d+2, {\tilde{a}}_{1}, \ldots ,{\tilde{a}}_{m}, {\tilde{b}}_{1}, \ldots ,{\tilde{b}}_{l}\) satisfy \((i),(iii)\sim (vi)\).

This proves (b). \(\square \)

Definition

( [11] §3) Let \(\gamma \) be an integer such that \(\gamma \ge 1\) , \(p \not \mid \gamma \) and \(2|\gamma \). We define

$$\begin{aligned} \begin{aligned}&{\tilde{H}}({\mathbb {Z}}/\gamma {\mathbb {Z}}) \\&\quad {\mathop {=}\limits ^{def}}\left\{ (c_{P})_{P\in T_{U}},c_{P}\in {\mathbb {Z}} /\gamma {\mathbb {Z}} \mid ( \ < c_{P}>_{P\in T_{U}} \ = \ {\mathbb {Z}}/\gamma {\mathbb {Z}} \ ) \ and \right. \\&\qquad \quad \left. \left( \sum _{P\in T_{U}} c_{P}=0\right) \right\} \\&\qquad H({\mathbb {Z}}/\gamma {\mathbb {Z}}) {\mathop {=}\limits ^{def}}{\tilde{H}}({\mathbb {Z}}/\gamma {\mathbb {Z}})/({\mathbb {Z}}/\gamma {\mathbb {Z}})^{\times } \end{aligned} \end{aligned}$$

The natural identification Surj\((Q,{\mathbb {Z}}/\gamma {\mathbb {Z}})\)\(\simeq \)\({\tilde{H}}({\mathbb {Z}}/\gamma {\mathbb {Z}})\) and the restriction map Hom\((Q,{\mathbb {Z}}/\gamma {\mathbb {Z}})\rightarrow \)Hom\((Q_{U},{\mathbb {Z}}/\gamma {\mathbb {Z}})\) yield the following map

$$\begin{aligned} \begin{aligned}&H({\mathbb {Z}}/\gamma {\mathbb {Z}}) \simeq \{ H'\subset \pi _1({\mathbb {P}}^1{\setminus } T_{U}) : open \ subgroup \ \mid \pi _ 1({\mathbb {P}}^{1} {\setminus } T_{U})/H' \simeq {\mathbb {Z}}/\gamma {\mathbb {Z}}\} \\&\quad \rightarrow \left\{ H \subset \pi _{1}(U) : open \ subgroup \ | \right. \\&\quad \left. \left( \ \pi _{1} (U)/H \simeq {\mathbb {Z}}/\gamma {\mathbb {Z}} \ \ \mathrm{or }\ \ \pi _{1}(U)/H \simeq {\mathbb {Z}}/\frac{1}{2} \gamma {\mathbb {Z}}\right) \ and \ L_{U} \subset H \right\} \end{aligned} \end{aligned}$$

Fix closed points \(\rho _{0}\ne \rho _{\infty } \in {\mathbb {P}}^{1}\). For each isomorphism \(\phi : {\mathbb {P}}^{1} \simeq {\mathbb {P}}^{1}\) with \(\phi (\rho _{0})=0,\phi (\rho _{\infty })=\infty \), we obtain a bijection \({\mathbb {P}}^{1}(k)\backslash \{ \rho _{\infty } \} \simeq {\mathbb {P}}^{1}(k)\backslash \{ \infty \}= k\). This bijection does not depend on the choice of \(\phi \) up to scalar multiplication. Hence the additive structure on \({\mathbb {P}}^{1}(k)\backslash \{ \rho _{\infty } \}\) that is induced by this bijection does not depend on the choice of \(\phi \), and only depends on the choice of \(\rho _{0}\) and \(\rho _{\infty }\).

Theorem 3.3

Let \(A(U,P_{0},P_{\infty })\) be the following.

$$\begin{aligned} \begin{aligned}&A(U,P_{0},P_{\infty }){\mathop {=}\limits ^{def}}\\&\quad \left\{ (a_{P})_{P\in T_{U} \backslash \{ P_{0},P_{\infty }\}} \ | \ a_{P}\in {\mathbb {F}}_{p}, \sum _{P \in T_{U} \backslash \{ P_{0},P_{\infty }\}}a_{P}P=P_{0} \right\} \\&\quad (with\ respect\ to\ the\ additive\ structure\ associated\ with\ P_{0}\ \mathrm{and }\ P_{\infty }) \end{aligned} \end{aligned}$$

Then \(A(U,P_{0},P_{\infty })\) can be recovered group-theoretically from \(\pi _{1}(U)\), \(L_{U}\), \(P_{0}\) and \(P_{\infty }\).

Proof

Step 1. Construct a suitable cover \(U_{H}\) over U defined by \(\{ a_{P} \}_{P}\).

We define \(a_{1}, \ldots ,a_{m}, b_{1}, \ldots ,b_{l} \in \{0,1, \ldots ,p-1\}\) by \(a_{i} \ mod \ p =a_{P_{i}} , b_{j} \ mod \ p = a_{R_{j}}\ (i=1,\ldots ,m \ , \ j=1,\ldots ,l)\), and apply Lemma 3.2 (b) to them. Then we obtain \({\tilde{a}}_{P_{i}}{\mathop {=}\limits ^{def}}{\tilde{a}}_{i} , \ {\tilde{a}}_{R_{j}}{\mathop {=}\limits ^{def}}{\tilde{b}}_{j} , \ d\) that satisfy (i), (iii), (iv), (v),  (vi) of Lemma 3.2. Let H (resp. \(H'\)) be the open subgroup of \(\pi _{1}(U)\) (resp. \(\pi _{1}({\mathbb {P}}^{1} \backslash T_{U}) \)) associated with \((c_{P})_{P \in T_{U}} \in H({\mathbb {Z}}/(p^{d}-1){\mathbb {Z}})\), where

$$\begin{aligned}&c_{P_{\infty }}=1, \\&c_{P_{0}}=s-1 {\mathop {=}\limits ^{def}}\sum _{P \in T_{U} \backslash \{ P_{0} , P_{\infty }\}} {\tilde{a}}_{P}-1,\\&c_{P}=-{\tilde{a}}_{P} \ (P \ne P_{0},P_{\infty }). \end{aligned}$$

Set

$$\begin{aligned}&X_{H}{\mathop {=}\limits ^{def}}(U_{H})^{cpt},\\&(\mathbb {P}^{1})_{H'} {\mathop {=}\limits ^{def}}((\mathbb {P}^{1}\backslash T_{U})_{H'})^{cpt}, \\&\phi : X_{H}\rightarrow X,\\&\psi :X_{H} \rightarrow (\mathbb {P}^{1})_{H'}. \end{aligned}$$

By Lemma 3.2 (vi), we have \((p^d-1,{{\tilde{a}}}_{R_1})=1\). Then \(R_{1}\) is totally ramified in \(({\mathbb {P}}^1)_{H'}\rightarrow {\mathbb {P}}^1\). On the other hand, by definition, \(R_{1}\) is unramified in \(X\rightarrow {\mathbb {P}}^1\). Hence the above commutative diagram is a cartesian product on generic points. In particular, the degree of \(X_H\rightarrow X\) is \(p^d-1\), that is the degree of \(({\mathbb {P}}^1)_{H'}\rightarrow {\mathbb {P}}^1\).

For \(r \in {\mathbb {Z}}_{\ge 0}\), let \({\mathcal {H}}_{r}\) be \(H^{0}(X_{H},\varOmega _{X_{H}})((\chi _{{\tilde{\mu }}_{(1,1)} ,d}^{-{\tilde{a}}_{R_{1}}})^{p^{r}})\).

Step 2. Prove that whether the action of the Cartier operator C on \( \sum _{r} {\mathcal {H}}_{r}\) is nilpotent or not can be determined group-theoretically.

Then by Theorem 2.1 and Corollary 2.2, whether \((\pi _{1}(X_{H})^{ab}/p)(\chi _{{\tilde{\mu }}_{(1,1)} , d}^{-{\tilde{a}}_{R_{1}}})=0\) holds or not can be determined group-theoretically (here, \({\tilde{\mu }}_{(1,1)} \in {\tilde{X}}\) is a point above \(\mu _{(1,1)}\)). By Artin-Schreier theory,

$$\begin{aligned} \begin{aligned}&(\pi _{1}(X_{H})^{ab}/p)^{*} {\mathop {=}\limits ^{def}}Hom(\pi _{1}(X_{H})^{ab}/p , {\mathbb {F}}_{p}) = Hom_{cont}(\pi _{1}(X_{H}) , {\mathbb {F}}_{p}) \\&\quad = H^{1}_{et}(X_{H},{\mathbb {F}}_{p}) = H^{1}(X_{H},{\mathcal {O}}_{X_{H}})[F-1] \end{aligned} \end{aligned}$$

This, together with [9] Proposition 9, implies

$$\begin{aligned} \begin{aligned}&(\pi _{1}(X_{H})^{ab}/p)(\chi _{{\tilde{\mu }}_{(1,1)} , d}^{-{\tilde{a}}_{R_{1}}})=0 \\&\quad \Leftrightarrow (\pi _{1}(X_{H})^{ab}/p)^{*}((\chi _{{\tilde{\mu }}_{(1,1)} , d}^{-{\tilde{a}}_{R_{1}}})^{-1})=0 \\&\quad \Leftrightarrow The\ Frobenius\ F\ on \sum _{r}H^{1}(X_{H},{\mathcal {O}}_{X_{H}})((\chi _{{\tilde{\mu }}_{(1,1)} , d}^{-{\tilde{a}}_{R_{1}}})^{-p^{r}}) \ is\ nilpotent \\&\quad \Leftrightarrow The\ Cartier\ operator\ C \ on \sum _{r} {\mathcal {H}}_{r} \ is\ nilpotent \end{aligned} \end{aligned}$$

Step 3. Construct a suitable k-basis of \({\mathcal {H}}_{0}\).

By fixing a suitable coordinate choice of \({\mathbb {P}}^{1}\), Let

$$\begin{aligned}&B {\mathop {=}\limits ^{def}}k[x,x^{-1},(x-P_{1})^{-1},\ldots ,(x-P_{m})^{-1}, (x-R_{1})^{-1},\ldots ,(x-R_{l})^{-1}][z]\\&\quad /\langle z^{2}-x(x-P_{1})\ldots (x-P_{m})\rangle , \end{aligned}$$

then we can write \(U=SpecB\). Set

$$\begin{aligned} B_{H}{\mathop {=}\limits ^{def}}B[y]/\langle y^{p^{d}-1}-x^{s-1}\prod _{P \in T_{U} \backslash \{ P_{0},P_{\infty } \}}(x-P)^{-{\tilde{a}}_{P}}\rangle , \end{aligned}$$

then we can write \(U_{H}=SpecB_{H}\). Because

$$\begin{aligned} \varOmega _{{\mathbb {P}}^{1}\backslash T_{U}}={\mathcal {O}}_{{\mathbb {P}}^{1}\backslash T_{U}}(dx)={\mathcal {O}}_{{\mathbb {P}}^{1}\backslash T_{U}}(dx/x) \end{aligned}$$

and \({\mathbb {P}}^{1}\backslash T_{U} \leftarrow U_{H}\) is étale, we have \( \varOmega _{U_{H}}={\mathcal {O}}_{U_{H}}(dx/x)\). By the above coordinate and the definition of \(\chi _{{\tilde{\mu }}_{(1,1)} , d}^{-{\tilde{a}}_{R_{1}}}\), we have

$$\begin{aligned} \chi _{{\tilde{\mu }}_{(1,1)} , d}^{-{\tilde{a}}_{R_{1}}}(\gamma ) = \gamma (y)/y\ (\gamma \in I_{{\tilde{\mu }}_{(1,1)}}). \end{aligned}$$

Then Lemma 3.2(vi) (i.e. \((p^{d}-1,{\tilde{a}}_{R_{1}}) = 1\)) implies that we have

$$\begin{aligned} \varGamma (U_{H},\varOmega _{U_{H}})(\chi _{{\tilde{\mu }}_{(1,1)},d}^{-{\tilde{a}}_{R_{1}}}) = By(dx/x). \end{aligned}$$

Let \(f\in B\) and set \(\omega = fy(\frac{dx}{x})\in \varGamma (U_{H},\varOmega _{U_{H}})(\chi _{{\tilde{\mu }}_{(1,1)},d}^{ -{\tilde{a}}_{R_{1}}})\). We will consider a necessary and sufficient condition for \(\omega \in \varGamma (X_{H},\varOmega _{X_{H}})(\chi _{{\tilde{\mu }}_{(1,1)},d}^{ -{\tilde{a}}_{R_{1}}})\). This can be checked at each \(\nu \in X_H\setminus U_H\). Let \(t_{\nu }\) be a prime element of \({\mathcal {O}}_{X_{H},\nu }\).

  • Suppose \(\phi (\nu ) = \lambda _{\infty }\)

The ramification index of \(\psi (\nu )\) over \(P_{\infty }\) is \(p^{d}-1\). The ramification index of \(\phi (\nu )=\lambda _{\infty }\) over \(P_{\infty }\) is 2. By Abhyankar’s lemma, the ramification index of \(\nu \) over \(\lambda _{\infty }\) is \((p^{d}-1)/2\) and \(\nu \) is unramified over \(\psi (\nu )\). By \((dx/dt_{\nu })=-x^{2}(dx^{-1}/dt_{\nu })\) and \(ord_{\nu }(dx^{-1}/dt_{\nu })=p^{d}-2\), we have \(ord_{\nu }(dx/dt_{\nu })=-p^{d}\), and

$$\begin{aligned} \begin{aligned} ord_{\nu }\left( fy\frac{dx}{dt_{\nu }}x^{-1}\right)&=\frac{p^{d}-1}{2}ord_{\lambda _{\infty }}(f)+1-p^{d}+(p^{d}-1)\\&=\frac{p^{d}-1}{2}ord_{\lambda _{\infty }}(f) \end{aligned} \end{aligned}$$

therefore

$$\begin{aligned} \begin{aligned} \omega&= \left( fy\frac{dx}{dt_{\nu }}x^{-1}\right) dt_{\nu } \in \varOmega _{X_{H},\nu } \\&\Leftrightarrow \ ord_{\nu }\left( fy\frac{dx}{dt_{\nu }}x^{-1}\right) \ge 0 \\&\Leftrightarrow \ ord_{\lambda _{\infty }}(f) \ge 0 \end{aligned} \end{aligned}$$
  • Suppose \(\phi (\nu )=\lambda _{0}\)

Set \(e_{P_{0}}{\mathop {=}\limits ^{def}}(p^{d}-1)/(p^{d}-1,s-1)\) which is the ramification index of \(\psi (\nu )\) over \(P_{0}\). By Lemma 3.2 (v), we have \(2|e_{P_{0}}\). By the same argument as above, the ramification index of \(\nu \) over \(\lambda _{0}\) is \(e_{P_{0}}/2\) and that \(\nu \) is unramified over \(\psi (\nu )\). Then

$$\begin{aligned} \begin{aligned} ord_{\nu }\left( fy\frac{dx}{dt_{\nu }}x^{-1}\right)&= \frac{e_{P_{0}}}{2}ord_{\lambda _{0}}(f)+\frac{(s-1) e_{P_{0}}}{p^{d}-1}+(e_{P_{0}}-1)-e_{P_{0}}\\&= \frac{e_{P_{0}}}{2}\left( ord_{\lambda _{0}}(f)+\frac{2\left( (s-1) -(p^{d}-1,s-1)\right) }{p^{d}-1}\right) \end{aligned} \end{aligned}$$

By Lemma 3.2 (iv), we have

$$\begin{aligned} p^{d}-1 \ge 2s > 2((s-1)-(s-1,p^{d}-1))\ge 0. \end{aligned}$$

Therefore

$$\begin{aligned} \begin{aligned} \omega&= \left( fy\frac{dx}{dt_{\nu }}x^{-1}\right) dt_{\nu } \in \varOmega _{X_{H},\nu }\\&\Leftrightarrow \ ord_{\nu }\left( fy\frac{dx}{dt_{\nu }}x^{-1}\right) \ge 0 \\&\Leftrightarrow \ ord_{\lambda _{0}}(f) \ge -\frac{2((s-1)-(p^{d}-1,s-1))}{p^{d}-1}\\&\Leftrightarrow \ ord_{\lambda _{0}}(f) \ge 0 \end{aligned} \end{aligned}$$
  • Suppose \(\phi (\nu )=\lambda _{i} \ (i= 1,2,\ldots ,m )\)

Set \(e_{P_{i}}{\mathop {=}\limits ^{def}}((p^{d}-1)/(p^{d}-1,{\tilde{a}}_{P_{i}}))\), this is the ramification index of \(\psi (\nu )\) over \(P_{i}\). By Lemma 3.2 (v), we have \(2|e_{P_{i}}\). By the same argument as above, the ramification index of \(\nu \) over \(\lambda _{i}\) is \(e_{P_{i}}/2\) and \(\nu \) is unramified over \(\psi (\nu )\). Then

$$\begin{aligned} \begin{aligned} ord_{\nu }\left( fy\frac{dx}{dt_{\nu }}x^{-1}\right)&= \frac{e_{P_{i}}}{2}ord_{\lambda _{i}}(f)-\frac{{\tilde{a}}_{P_{i} }e_{P_{i}}}{p^{d}-1}+(e_{P_{i}}-1)\\&= \frac{e_{P_{i}}}{2}\left( ord_{\lambda _{i}}(f)+2\frac{(p^{d}-1) -({\tilde{a}}_{P_{i}}+(p^{d}-1,{\tilde{a}}_{P_{i}}))}{p^{d}-1}\right) \end{aligned} \end{aligned}$$

By definition,

$$\begin{aligned} 2>2((p^{d}-1)-({\tilde{a}}_{P_{i}}+(p^{d}-1,{\tilde{a}}_{P_{i}})))/(p^{d}-1) \end{aligned}$$

is clear. By Lemma 3.2 (iv), we have

$$\begin{aligned} p^{d}-1 \ge 4s > 2({\tilde{a}}_{P_{i}}+(p^{d}-1,{\tilde{a}}_{P_{i}})), \end{aligned}$$

hence

$$\begin{aligned} 2((p^{d}-1)-({\tilde{a}}_{P_{i}}+(p^{d}-1,{\tilde{a}}_{P_{i}})))/(p^{d}-1)>1. \end{aligned}$$

Therefore

$$\begin{aligned} \begin{aligned} \omega&= \left( fy\frac{dx}{dt_{\nu }}x^{-1}\right) dt_{\nu } \in \varOmega _{X_{H},\nu }\\&\Leftrightarrow \ ord_{\nu }\left( fy\frac{dx}{dt_{\nu }}x^{-1}\right) \ge 0 \\&\Leftrightarrow \ ord_{\lambda _{i}}(f) \ge -2\frac{(p^{d}-1)-({\tilde{a}}_{P_{i}}+(p^{d}-1, {\tilde{a}}_{P_{i}}))}{p^{d}-1})\\&\Leftrightarrow \ ord_{\lambda _{i}}(f) \ge -1 \end{aligned} \end{aligned}$$
  • Suppose \(\phi (\nu )=\mu _{(i,j)} \ (i= 1,2,\ldots ,l \ , \ j =1,2 )\)

Set \(e_{R_{i}}{\mathop {=}\limits ^{def}}((p^{d}-1)/(p^{d}-1,{\tilde{a}}_{R_{i}}))\), which is the ramification index of \(\psi (\nu )\) over \(R_{i}\). \(\mu _{(i,j)}\) is unramified over \(R_{i}\). Thus the ramification index of \(\nu \) over \(\mu _{(i,j)}\) is \(e_{R_{i}}\) and \(\nu \) is unramified over \(\psi (\nu )\). Then

$$\begin{aligned} \begin{aligned} ord_{\nu }\left( fy\frac{dx}{dt_{\nu }}x^{-1}\right)&= e_{R_{i}}ord_{\mu _{(i,j)}}(f)-\frac{{\tilde{a}}_{R_{i}} e_{R_{i}}}{p^{d}-1}+(e_{R_{i}}-1)\\&= e_{R_{i}}\left( ord_{\mu _{(i,j)}}(f)-\frac{{\tilde{a}}_{R{i}} +(p^{d}-1,{\tilde{a}}_{R_{i}})}{p^{d}-1}+1\right) \end{aligned} \end{aligned}$$

By Lemma 3.2 (iv), we have

$$\begin{aligned} p^{d}-1>{\tilde{a}}_{R{i}}+(p^{d}-1,{\tilde{a}}_{R_{i}})>0. \end{aligned}$$

Therefore

$$\begin{aligned} \begin{aligned} \omega&= \left( fy\frac{dx}{dt_{\nu }}x^{-1}\right) dt_{\nu } \in \varOmega _{X_{H},\nu }\\&\Leftrightarrow \ ord_{\nu }\left( fy\frac{dx}{dt_{\nu }}x^{-1}\right) \ge 0 \\&\Leftrightarrow \ ord_{\mu _{(i,j)}}(f) \ge \frac{{\tilde{a}}_{R{i}}+(p^{d}-1,{\tilde{a}}_{R_{i}})}{p^{d}-1}-1\\&\Leftrightarrow \ ord_{\mu _{(i,j)}}(f) \ge 0 \end{aligned} \end{aligned}$$

Set \(D {\mathop {=}\limits ^{def}}\lambda _{1}+\lambda _{2}+\cdots +\lambda _{m} \in Div(X)\). By the above computation,

$$\begin{aligned} \omega \in \varGamma (X_{H}, \varOmega _{X_{H}}) \Leftrightarrow f \in \varGamma (X,{\mathscr {L}}(D)) \end{aligned}$$

Let \(K_{X}\) be the canonical divisor of X. By Hurwitz’s formula, we have \(g{\mathop {=}\limits ^{def}}g(X)=m/2\), and \(deg(K_{X})=m-2\). Thus by the Riemann-Roch theorem, we have \(dim_{k}\varGamma (X,{\mathscr {L}}(D))=g+1\). The valuations of

$$\begin{aligned} 1,(x/z),(x^{2}/z),\ldots ,(x^{g}/z) \in \varGamma (X,{\mathscr {L}}(D)) \end{aligned}$$

at \(\lambda _{0}\) are mutually different, hence these functions are linearly independent over k. Then we have

$$\begin{aligned} \varGamma (X,{\mathscr {L}}(D)) = \langle 1,(x/z),(x^{2}/z),\ldots ,(x^{g}/z)\rangle . \end{aligned}$$

Step 4. Calculate the action of C on the k-basis of \({\mathcal {H}}_{0}\) in Step 3.

By Lemma 3.2 (iv) (which implies \(p^{d}-1>s-1\)) and the following formula

$$\begin{aligned} C^{d}\left( x^{j}y^{\alpha p^{d}}z^{\beta p^{d}}\frac{dx}{x}\right) = \left\{ \begin{array}{ll} x^{j/p^{d}}y^{\alpha }z^{\beta }\frac{dx}{x} &{}\quad (j \in p^{d}{\mathbb {Z}}) \\ 0 &{} \quad (j \in {\mathbb {Z}} \backslash p^{d}{\mathbb {Z}}) \end{array}\right. \end{aligned}$$

we have

$$\begin{aligned} \begin{aligned}&C^{d}\left( y\frac{dx}{x}\right) \\&\quad = C^{d}\left( x^{1-s}(x-P_{1})^{{\tilde{a}}_{P_{1}}}\ldots (x-P_{m})^{{\tilde{a}}_{m}} (x-R_{1})^{{\tilde{a}}_{R_{1}}}\ldots (x-R_{l})^{{\tilde{a}}_{R_{l}}}y^{p^{d}}\frac{dx}{x}\right) \\&\quad = -(a_{P_{1}}P_{1}+\cdots +a_{P_{m}}P_{m}+a_{R_{1}}R_{1}+\cdots +a_{R_{l}}R_{l})y\frac{dx}{x} \end{aligned} \end{aligned}$$
(1)

On the other hand, for any \(q \in \{ 1,2\ldots ,g \} \), we have

$$\begin{aligned} \begin{aligned}&C^{d}\left( \frac{x^{q}}{z}y\frac{dx}{x}\right) \\&\quad = C^{d}\left( x^{\left( q+1-s+\frac{p^{d}-1}{2}\right) }(x-P_{1})^{\left( {\tilde{a}}_{P_{1}} +\frac{p^{d}-1}{2}\right) }\ldots \right. \\&\qquad \left. (x-P_{m})^{\left( {\tilde{a}}_{P_{m}}+\frac{p^{d}-1}{2}\right) } (x-R_{1})^{{\tilde{a}}_{R_{1}}}\ldots (x-R_{l})^{{\tilde{a}}_{R_{l}}}\left( \frac{y}{z} \right) ^{p^{d}}\frac{dx}{x}\right) \\&\quad = \sum _{t} \sum _{(\delta _{1},\ldots ,\delta _{m},\epsilon _{1},\ldots ,\epsilon _{l})} \left( \left( \prod _{i} \left( {\begin{array}{c}{\tilde{a}}_{P_{1}}+\frac{p^{d}-1}{2}\\ \delta _{i}\end{array}}\right) (-P_{i})^{\left( {\tilde{a}}_{P_{i}}+ \frac{p^{d}-1}{2}-\delta _{i}\right) }\right) \right. \\&\qquad \left. \left( \prod _{j}\left( {\begin{array}{c}{\tilde{a}}_{R_{j}}\\ \epsilon _{j}\end{array}}\right) (-R_{j})^{({\tilde{a}}_{R_{j}}-\epsilon _{j})}\right) x^{t+1}\frac{y}{z}\frac{dx}{x}\right) \end{aligned} \end{aligned}$$

In this formula, t runs over all the integers that satisfy

$$\begin{aligned} q+1-s+((p^{d}-1)/2) \le (t+1)p^{d} \le q+1+(m+1)((p^{d}-1)/2) \end{aligned}$$

(hence \((m/2)-1\ge t \ge 0\) by Lemma 3.2 (iv)). \(\delta _{1},\ldots ,\delta _{m},\epsilon _{1},\ldots ,\epsilon _{l}\) run over all the non-negative integers that satisfy

$$\begin{aligned} \sum _{i} \delta _{i}+\sum _{j} \epsilon _{j}=\frac{p^{d}-1}{2}+s-q+tp^{d}. \end{aligned}$$

By Lemma 3.2 (iii), for any \(q\in \{ 1,2,\ldots ,g \}\), we have

$$\begin{aligned} C^{d}\left( \frac{x^{q}}{z}y\frac{dx}{x}\right) = 0 \end{aligned}$$
(2)

Step 5. End of proof.

By the fact that \(C(y^{p^{n}}\frac{dx}{x})\in {\mathcal {H}}_{n-1}\) (\( n \in \{ 1,2,\ldots , d \}\)) and the formulas of (1) and (2), we have that \(C^{d}=0\) if and only if C is nilpotent. Thus, \(a_{P_{1}}P_{1}+\cdots +a_{P_{m}}P_{m}+a_{R_{1}}R_{1}+\cdots a_{R_{l}}R_{l}=0\) holds if and only if the Cartier operator C on \(\sum _{r}{\mathcal {H}}_{r}\) is nilpotent. Therefore whether

$$\begin{aligned} a_{P_{1}}P_{1}+\cdots +a_{P_{m}}P_{m}+a_{R_{1}}R_{1}+\cdots a_{R_{l}}R_{l}=0 \end{aligned}$$

holds or not can be determined group-theoretically from \(\pi _{1}(U)\) and \(L_{U}\). \(\square \)

4 Reconstruction of curves of (1,1)-type by their fundamental groups

In this section, we consider curves of (1,1)-type, which are one-punctured elliptic curves (We are considering that the unique cusp is the identity element of the elliptic curve) . We will first prove that the linear relations of the images of m-torsion points in \({\mathbb {P}}^{1}\) are determined by the fundamental group (Corollary 4.8). Then we will use this corollary, and prove that the isomorphism class (as a scheme) of such a curve is determined by the fundamental group (Theorem 4.9). We will use the same symbols as in the previous sections for elliptic curves and their open subschemes. Let E be a (complete) elliptic curve over k.

Proposition 4.1

Let \({\mathcal {O}}\in E(k)\). Let \(x,x'\) be finite morphisms \(E \rightarrow {\mathbb {P}}^{1}\) of degree 2 that are ramified at \({\mathcal {O}}\). Then there exists an isomorphism \(\phi : {\mathbb {P}}^{1} \simeq {\mathbb {P}}^{1}\) that satisfies \(x=\phi \circ x'\).

Proof

Set \(P{\mathop {=}\limits ^{def}}x({\mathcal {O}}), \ P'{\mathop {=}\limits ^{def}}x'({\mathcal {O}})\). When we think of \(P,P'\) as elements of \(Div({\mathbb {P}}^{1})\), we have \({\mathscr {L}}(P)\simeq {\mathscr {L}}(P')\simeq {\mathscr {O}}(1)\). By definition, we have \(x^{*}({\mathscr {L}}(P))={\mathscr {L}}(2{\mathcal {O}})=x'^{*}({\mathscr {L}}(P'))\). Then both x and \(x'\) correspond to a linear system that is a subset of \(|{\mathscr {L}}(2{\mathcal {O}})|\) of dimension 1.

By the Riemann–Roch theorem, we have \(dim|{\mathscr {L}}(2{\mathcal {O}})|=1\). Thus both x and \(x'\) correspond to \(|{\mathscr {L}}(2{\mathcal {O}})|\) . By [2] II Remark 7.8.1, they are equivalent up to an isomorphism of \({\mathbb {P}}^{1}\). \(\square \)

Let \({\mathcal {O}}\in E(k)\) and consider the group structure on E defined by the elliptic curve \((E,{\mathcal {O}})\). Let \(A \subset E(k)\) be a finite subset that includes E[2] and satisfies \(-A=A\). Then, by Proposition 4.1, a finite morphism \(x : E\rightarrow {\mathbb {P}}^{1}\) of degree 2 that is ramified at \({\mathcal {O}}\) is unique up to an automorphism of \({\mathbb {P}}^{1}\), hence the subgroup \(L_{E\backslash A}\subset \pi _{1}(E\backslash A)\) with respect to such x depend only on \({\mathcal {O}}\). So, we sometimes write \(L_{E\backslash A, {\mathcal {O}}}\) for \(L_{E\backslash A}\). For any elliptic curve that has additive structure with respect to \({\mathcal {O}}\), we fix a finite morphisms \(x:E\rightarrow {\mathbb {P}}^{1}\) of degree 2 that is ramified at \({\mathcal {O}}\) from now on

Lemma 4.2

For any \(m\in {\mathbb {Z}}_{>0}\), the open subgroup \(\pi _{1}(E\backslash E[m]) \subset \pi _{1}(E\backslash {\mathcal {O}})\) that corresponds to the multiplication-by-m map \([m] : E\backslash E[m]\rightarrow E \backslash {\mathcal {O}}\) can be recovered group-theoretically from \(\pi _{1}(E \backslash {\mathcal {O}})\).

Proof

By Theorem 2.1, the natural morphism \(\pi _{1}(E\backslash {\mathcal {O}})\rightarrow \pi _{1}(E) \rightarrow \pi _{1}(E)/m\), hence its kernel \(\pi _{1}(E\backslash E[m])\), can be recovered from \(\pi _{1}(E\backslash {\mathcal {O}})\). \(\square \)

Theorem 4.3

(Tamagawa) For any positive even integer m, \((L_{E \backslash E[m],{\mathcal {P}}})_{P\in E[m]} \) can be recovered group-theoretically from \(\pi _{1}(E \backslash {\mathcal {O}} )\).

We will need some definitions and lemmas for the proof of Theorem 4.3.

Definition

Let N be a group, M a left N-module. Set

$$\begin{aligned}&M^{N} {\mathop {=}\limits ^{def}}\{ m\in M | \ \forall g\in N, gm=m \},\\&M_{N} {\mathop {=}\limits ^{def}}M/\langle gm-m \ | \ g\in N, m\in M\rangle , \\&M^{\vee } {\mathop {=}\limits ^{def}}Hom_{{\mathbb {Z}}}(M,{\mathbb {Q}}/{\mathbb {Z}}) \end{aligned}$$

(the action of N on \({\mathbb {Q}}/{\mathbb {Z}}\) is trivial).

Lemma 4.4

Let k be an algebraically closed field of characteristic \(p\ge 0\), l a prime that is not p, X and Y curves over k, \(X \rightarrow Y\) a finite morphism over k, U (resp. V) a non-empty open subscheme of X (resp. Y). Suppose that \(X\rightarrow Y\) restricts to a Galois cover \(U \rightarrow V\). Let G be the Galois group of \(U \rightarrow V\). Then we get a natural isomorphism

$$\begin{aligned} ((\pi _{1}(X)^{ab,l})_{G})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\simeq (\pi _{1}(Y)^{ab,l})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} \end{aligned}$$

Proof

Applying [6] Corollary 7.2.5 (Hochschild–Serre spectral sequence) to the natural exact sequence \(1 \rightarrow \pi _{1}(U) \rightarrow \pi _{1}(V) \rightarrow G \rightarrow 1\), we get an exact sequence

$$\begin{aligned} 0 \rightarrow H^{1}(G,{\mathbb {Q}}/{\mathbb {Z}})\rightarrow H^{1}(\pi _{1}(V),{\mathbb {Q}}/{\mathbb {Z}}) \rightarrow H^{1}(\pi _{1}(U),{\mathbb {Q}}/{\mathbb {Z}})^{G}\rightarrow H^{2}(G,{\mathbb {Q}}/{\mathbb {Z}}) \end{aligned}$$

By the general property of homological algebra \(H^{1}(N,{\mathbb {Q}}/{\mathbb {Z}})\simeq Hom(N^{ab},{\mathbb {Q}}/{\mathbb {Z}})\) and [6] Theorem 2.9.6(Pontryagin duality), We get an exact sequence

$$\begin{aligned} 0 \leftarrow G^{ab} \leftarrow \pi _{1}(V)^{ab} \leftarrow (\pi _{1}(U)^{ab})_{G} \leftarrow H^{2}(G,{\mathbb {Q}}/{\mathbb {Z}})^{\vee } \end{aligned}$$

Take the l-Sylow subgroups and the tensor products with \({\mathbb {Q}}_{l}\), we have

$$\begin{aligned} \begin{aligned}&0 \leftarrow G^{ab,l}\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} \leftarrow (\pi _{1}(V)^{ab,l})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} \\&\quad \leftarrow ((\pi _{1}(U)^{ab,l})_{G})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} \leftarrow H^{2}(G,{\mathbb {Q}}_{l}/{\mathbb {Z}}_{l})^{\vee }\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} \end{aligned} \end{aligned}$$

Since \(G^{ab,l}\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\) and \(H^{2}(G,{\mathbb {Q}}_{l}/{\mathbb {Z}}_{l})^{\vee }\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\) are torsion \({\mathbb {Q}}_{l}\) vector spaces, they are trivial. Then we have

$$\begin{aligned} ((\pi _{1}(U)^{ab,l})_{G})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\simeq (\pi _{1}(V)^{ab,l})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} \end{aligned}$$

By the general theory of étale fundamental groups (cf, [1] Exposé V, corollaire 2.4), the kernel of \((\pi _{1}(V)^{ab,l})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} \rightarrow (\pi _{1}(Y)^{ab,l})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\) is \(A {\mathop {=}\limits ^{def}}(\varSigma _{P\in Y\backslash V}I_{P})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\) and the kernel of \((\pi _{1}(U)^{ab,l})_{G}\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} \rightarrow (\pi _{1}(X)^{ab,l})_{G}\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\) is \(B {\mathop {=}\limits ^{def}}\) (the image of \((\varSigma _{P\in X\backslash U}I_{P})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\) in \((\pi _{1}(U)^{ab,l})_{G}\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\)) (Here, for \(P\in Y\backslash V\) (resp. \(P\in X \backslash U\)), \(I_{P}\) stands for the image of the inertia subgroup at P in \(\pi _{1}(V)^{ab,p'}\) (resp. \(\pi _{1}(U)^{ab,p'}\))). Observe that the isomorphism \(((\pi _{1}(U)^{ab,l})_{G})\otimes _{{\mathbb {Z}}_{l}} {\mathbb {Q}}_{l}\xrightarrow {\sim } (\pi _{1}(V)^{ab,l})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\) sends A onto B. Therefore we have

$$\begin{aligned} ((\pi _{1}(X)^{ab,l})_{G})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\simeq (\pi _{1}(Y)^{ab,l})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} \end{aligned}$$

\(\square \)

Definition

Let M be an abelian group equipped with a \({\mathbb {Z}}/2{\mathbb {Z}}\)-action. We define \(M^{+}{\mathop {=}\limits ^{def}}M^{{\mathbb {Z}}/2{\mathbb {Z}}}\), \(M^{-} {\mathop {=}\limits ^{def}}\{ a \in M | \tau a = -a \}\), where \(\tau \) is the unique generator of \({\mathbb {Z}}/2{\mathbb {Z}}\).

Let m be an even positive integer. The Galois group of \(E\backslash E[m]\)\(\rightarrow \)\({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]}\) acts on \(E\backslash E[m]\) and is isomorphic to \({\mathbb {Z}}/2{\mathbb {Z}}\).

Lemma 4.5

$$\begin{aligned} (\pi _{1}(E\backslash E[m])^{ab,p'})^{-} = ker(\pi _{1}(E\backslash E[m])^{ab,p'}\rightarrow \pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab,p'}) \end{aligned}$$

Proof

By G.A.G.A Theorems, \(\pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab, p'}\) is a free \(\hat{{\mathbb {Z}}}^{p'}\)-module. It is clear that

$$\begin{aligned} (\pi _{1}(E\backslash E[m])^{ab,p'})^{-} \subset ker(\pi _{1}(E\backslash E[m])^{ab,p'}\rightarrow \pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab,p'}). \end{aligned}$$

Thus, we have a natural surjective morphism

$$\begin{aligned} \pi _{1}(E\backslash E[m])^{ab,p'}/(\pi _{1}(E\backslash E[m])^{ab,p'})^{-} \twoheadrightarrow R, \end{aligned}$$

where \(R {\mathop {=}\limits ^{def}}Im(\pi _{1}(E\backslash E[m])^{ab,p'}\rightarrow \pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab,p'})\). At first we will prove that R is a free \(\hat{{\mathbb {Z}}}^{p'}\)-module. We have a short exact sequence

$$\begin{aligned} 1 \rightarrow R \rightarrow \pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab,p'} \rightarrow {\mathbb {Z}}/2{\mathbb {Z}} \rightarrow 1 \end{aligned}$$

Because R and \(\pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab,p'}\) are profinite abelian groups, we have \(R^{2'} \simeq \pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab,p',2'}\) and

$$\begin{aligned} 1 \rightarrow R^{2} \rightarrow \pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab,2} \rightarrow {\mathbb {Z}}/ 2{\mathbb {Z}} \rightarrow 1 \end{aligned}$$

(here, \(R^{2}\) stands for the Sylow 2-subgroup of R). This exact sequence is a sequence of \({\mathbb {Z}}_{2}\)-modules and \({\mathbb {Z}}_{2}\) is a PID, therefore \(R^{2}\) is a free \({\mathbb {Z}}_{2}\)-module and \(rank_{{\mathbb {Z}}_{2}}(R^{2})=rank_{{\mathbb {Z}}_{2}}(\pi _{1}({\mathbb {P}}^{1} \backslash T_{E\backslash E[m]})^{ab,2})\). Thus R is a free \(\hat{{\mathbb {Z}}}^{p'}\)-module and \(rank_{\hat{{\mathbb {Z}}}^{p'}}(R)=rank_{\hat{{\mathbb {Z}}}^{p'}} (\pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab,p'})\).

Let T be the torsion subgroup of \((\pi _{1}(E\backslash E[m])^{ab,p'})_{{\mathbb {Z}}/2{\mathbb {Z}}}\). By Lemma 4.4, we have \((\pi _{1}(E\backslash E[m])^{ab,l})_{{\mathbb {Z}}/2{\mathbb {Z}}}\otimes _{{\mathbb {Z}}_{l}} {\mathbb {Q}}_{l} \simeq \pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab,l}\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\) for any prime number l that is not p. From this, we deduce \((\pi _{1}(E\backslash E[m])^{ab,p'})_{{\mathbb {Z}}/2{\mathbb {Z}}}/T \simeq R\). By an easy computation, we have

$$\begin{aligned} 2((\pi _{1}(E\backslash E[m])^{ab,p'})^{-}) \subset (\tau -1)(\pi _{1}(E\backslash E[m])^{ab,p'}) \subset (\pi _{1}(E\backslash E[m])^{ab,p'})^{-} \end{aligned}$$

and that \(\pi _{1}(E\backslash E[m])^{ab,l}/(\pi _{1}(E\backslash E[m])^{ab,l})^{-}\) is torsion free. Thus we have

$$\begin{aligned} \pi _{1}(E\backslash E[m])^{ab,p'}/(\pi _{1}(E\backslash E[m])^{ab,p'})^{-} \simeq (\pi _{1}(E\backslash E[m])^{ab,p'})_{{\mathbb {Z}}/2{\mathbb {Z}}}/ T\simeq R. \end{aligned}$$

\(\square \)

Lemma 4.6

$$\begin{aligned} (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]} \subset (\pi _{1}(E\backslash E[m])^{ab,p'})^{-} \end{aligned}$$

Proof

\([m] : E \backslash E[m] \rightarrow E \backslash \{ {\mathcal {O}} \}\) is a Galois cover with Galois group E[m] (when p|m, \([m] : E \rightarrow E\) is decomposed uniquely as \([m]=[m]' \circ \phi \), where \([m]' : E' \rightarrow E\) (resp. \(\phi : E \rightarrow E'\)) is a separable (resp. purely inseparable) isogeny of eliptic curves, and we consider \([m]' : E' \rightarrow E\) instead of \([m] : E \rightarrow E\)). \(E\backslash E[2] \rightarrow {\mathbb {P}}^{1}\backslash \{ 0, 1, \lambda , \infty \}\) is a Galois cover with Galois group \({\mathbb {Z}}/2{\mathbb {Z}}\). \([m] : E \rightarrow E\) is the unique maximal abelian cover whose Galois group is killed by m. Then \(E\backslash E[2m]\xrightarrow { [m] } E\backslash E[2] \rightarrow {\mathbb {P}}^{1}\backslash \{ 0, 1, \lambda , \infty \}\) is a Galois cover with Galois group \(G{\mathop {=}\limits ^{def}}E[m]\rtimes {\mathbb {Z}}/2{\mathbb {Z}}\). By Lemma 4.4, we have

$$\begin{aligned} (\pi _{1}(E\backslash E[m])^{ab,l})_{G}\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l}\simeq (\pi _{1}( {\mathbb {P}}^{1} \backslash \{ \infty \})^{ab,l})\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} = 0 \end{aligned}$$

(for each \(l \ne p\)). Because G is a finite group and \({\mathbb {Q}}_{l}\) is a field of characteristic 0, then we have

$$\begin{aligned} (\pi _{1}(E\backslash E[m])^{ab,l})^{G}\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} \simeq (\pi _{1}(E\backslash E[m])^{ab,l})_{G}\otimes _{{\mathbb {Z}}_{l}}{\mathbb {Q}}_{l} = 0. \end{aligned}$$

As \((\pi _{1}(E\backslash E[m])^{ab,l})^{G}\) is a free \({\mathbb {Z}}_{l}\)-module, then

$$\begin{aligned} ((\pi _{1}(E\backslash E[m])^{ab,l})^{E[m]})^{+} = (\pi _{1}(E\backslash E[m])^{ab,l})^{G} = 0. \end{aligned}$$

Therefore

$$\begin{aligned} (\pi _{1}(E\backslash E[m])^{ab,l})^{E[m]} \subset (\pi _{1}(E\backslash E[m])^{ab,l})^{-}, \end{aligned}$$

hence

$$\begin{aligned} (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]} \subset (\pi _{1}(E\backslash E[m])^{ab,p'})^{-}. \end{aligned}$$

\(\square \)

Let W be the sum of all inertia subgroups in \(\pi _{1}(E\backslash E[m])^{ab,p'}\). By G.A.G.A theorems, W is isomorphic to \((\oplus _{P\in E[m]}\hat{{\mathbb {Z}}}^{p'})/\varDelta (\hat{{\mathbb {Z}}}^{p'})\), where \(\hat{{\mathbb {Z}}}^{p'}\) at each \(P \in E[m]\) corresponds to the inertia subgroup at P and \(\varDelta (\hat{{\mathbb {Z}}}^{p'})\) stands for the diagonal. W is closed under the action of the Galois group of

$$\begin{aligned} E\backslash E[2m] \xrightarrow { [m] } E\backslash E[2] \rightarrow {\mathbb {P}}^{1}\backslash \{ 0, 1, \lambda , \infty \}. \end{aligned}$$

Lemma 4.7

$$\begin{aligned} \#(\pi _{1}(E\backslash E[m])^{ab,p'})^{-}/(W^{-}\oplus (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]}) < \infty \end{aligned}$$

Proof

At first, we prove

$$\begin{aligned} \#(\pi _{1}(E\backslash E[m])^{ab,p'})/(W\oplus (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]})<\infty . \end{aligned}$$

We consider the following diagram

Where C is the cokernel of \((\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]} \rightarrow (\pi _{1}(E)^{ab,p'})^{E[m]}\). Note that \(\pi _{1}(E)\) is abelian.

The two horizontal sequences are exact. C is a subgroup of \(H^{1}(E[m],W).\)E[m] acts transitively on E[m], hence we have \(W^{E[m]}=1\). Let P be an element of E[m]. We have the following commutative diagram.

This implies that E[m] acts trivially on \(\pi _{1}(E)^{p'}\), hence we have

$$\begin{aligned} (\pi _{1}(E)^{ab,p'})^{E[m]}=\pi _{1}(E)^{ab,p'}. \end{aligned}$$

By chasing the diagram, we have

$$\begin{aligned} W\cap (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]}=W^{E[m]} = 1 \end{aligned}$$

(in \(\pi _{1}(E\backslash E[m])^{ab,p'})\) and

$$\begin{aligned} \pi _{1}(E\backslash E[m])^{ab,p'}/(W\oplus (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]})\simeq C. \end{aligned}$$

By the general property of homological algebra, we have

$$\begin{aligned} (\# (E[m]))\cdot H^{1}(E[m],W)=1. \end{aligned}$$

Thus we have

$$\begin{aligned} (\#(E[m]))\cdot ((\pi _{1}(E\backslash E[m])^{ab,p'})/(W\oplus (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]}))=0. \end{aligned}$$

As \(\pi _{1}(E\backslash E[m])^{ab,p'}\) is a finitely generated \(\hat{{\mathbb {Z}}}^{p'}\)-module, this shows

$$\begin{aligned} \#(\pi _{1}(E\backslash E[m])^{ab,p'})/(W\oplus (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]})) <\infty . \end{aligned}$$

By definition,

$$\begin{aligned} \begin{aligned}&((\pi _{1}(E\backslash E[m])^{ab,p'})^{-})\cap (W\oplus ((\pi _{1}(E\backslash E[m]))^{ab,p'})^{E[m]})\\&\quad =W^{-}\oplus ((\pi _{1}(E\backslash E[m]))^{ab,p'})^{E[m]}. \end{aligned} \end{aligned}$$

Then we have a natural injective homomorphism

$$\begin{aligned} \begin{aligned}&(\pi _{1}(E\backslash E[m])^{ab,p'})^{-}/(W^{-}\oplus (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]}) \\&\quad \hookrightarrow (\pi _{1}(E\backslash E[m])^{ab,p'})/(W\oplus (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]}). \end{aligned} \end{aligned}$$

Thus,

$$\begin{aligned} \#(\pi _{1}(E\backslash E[m])^{ab,p'})^{-}/(W^{-}\oplus (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]})<\infty . \end{aligned}$$

\(\square \)

Proof of Theorem 4.3

By Theorem 2.1 and Lemma 4.2, \(\pi _{1}(E\backslash E[m])^{ab,p'}\) can be recovered from \(\pi _{1}(E\backslash {\mathcal {O}})\). Then if

$$\begin{aligned} ker(\pi _{1}(E\backslash E[m])^{ab,p'}\rightarrow \pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab,p'}) \end{aligned}$$

could be recovered, \(L_{E\backslash E[m]}\) could be recovered. By Lemma 4.7 and the fact that R (see the proof of Lemma 4.5) is torsion free, we have

$$\begin{aligned}&ker(\pi _{1}(E\backslash E[m])^{ab,p'}\rightarrow \pi _{1}({\mathbb {P}}^{1}\backslash T_{E\backslash E[m]})^{ab,p'})\\&\quad =\{ a \in \pi _{1}(E\backslash E[m])^{ab,p'} | \ \mathrm{for\ some}\ { n} \in {\mathbb {N}},\ na \in W^{-}\\&\qquad \quad \oplus (\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]} \}. \end{aligned}$$

It is clear that the action of E[m] on \(\pi _{1}(E\backslash E[m])^{ab,p'}\) can be recovered from \(\pi _{1}(E\backslash {\mathcal {O}})\), hence \((\pi _{1}(E\backslash E[m])^{ab,p'})^{E[m]}\) can be recovered from \(\pi _{1}(E\backslash {\mathcal {O}})\). Recall that W is isomorphic to \((\oplus _{P\in E[m]}\hat{{\mathbb {Z}}}^{p'})/\varDelta (\hat{{\mathbb {Z}}}^{p'})\). Let \(pr_{P}\) be a projection map \(\oplus _{P\in E[m]}\hat{{\mathbb {Z}}}^{p'} \rightarrow \hat{{\mathbb {Z}}}^{p'}\) at P and \(i_{P}\) an isomorphism

Then

$$\begin{aligned} W^{-} = \langle i_{P}(a)-i_{-P}(a) | a\in \varDelta (\hat{{\mathbb {Z}}}^{p'}), P \in E[m]\rangle . \end{aligned}$$

By Theorem 2.1, E[m] can be recovered as (a quotient of) the set of inertia subgroups from \(\pi _{1}(E\backslash E[m])\). Then W, the additive structure on E[m] with identity element \({\mathcal {P}}\) (cf. the proof of Theorem 4.9 below) and the action of E[m] on W can be recovered from \(\pi _{1}(E\backslash {\mathcal {O}}) \). Therefore \(W^{-}\) can be recovered from \(\pi _{1}(E\backslash {\mathcal {O}})\). Hence \(L_{E\backslash E[m]}\) can be recovered from \(\pi _{1}(E\backslash {\mathcal {O}})\). \(\square \)

Corollary 4.8

For any even integer \(m>2\), \(A(E\backslash E[m], x(\lambda _{0}),x(\lambda _{\infty }))\) can be recovered group-theoretically from \(\pi _{1}(E \backslash {\mathcal {O}}\)). (The definition of \(A(U,P_{0},P_{\infty })\) is in the statement of Theorem 3.3.)

Proof

This is established by Theorems 3.3 and 4.3. \(\square \)

Recall that F means the algebraic closure of \({\mathbb {F}}_{p}\) in k.

Theorem 4.9

Let U be a curve over k. Supose that there exists a curve \(E'\) over F that satisfies \(E\simeq E'\times _{F}k\). Then the following equivalence holds.

$$\begin{aligned} \pi _{1}(U)\simeq \pi _{1}(E\backslash {\mathcal {O}}) \Leftrightarrow U \simeq E\backslash {\mathcal {O}}\ (\mathrm{as\ schemes}) \end{aligned}$$

Proof

\((\Leftarrow )\) is clear. Thus it is sufficient to show (\(\Rightarrow \)). Fix an isomorphisms \(\pi _{1}(E\backslash {\mathcal {O}})\simeq \pi _{1}(U)\).

By Theorem 2.1, the genus of \(X {\mathop {=}\limits ^{def}}\ U^{cpt}\) is 1, and \(\#(X\backslash U)=1\). Set \(X\backslash U=\{ {\mathcal {O}}' \}\). We consider the additive structure on E (resp. X) defined by the elliptic curve \((E,{\mathcal {O}})\) (resp. \((X,{\mathcal {O}}')\)). Let m be an even integer such that \(E[2]\subsetneq E[m]\). Then the isomorphism \(\pi _{1}(E\backslash {\mathcal {O}}) \simeq \pi _{1}(U)\) induces an isomorphism \(\pi _{1}(E\backslash E[m])\simeq \pi _{1}(X\backslash X[m])\) by Lemma 4.2, which induces a bijection \(\phi : E[m] \simeq X[m]\) by Theorem 2.1. We may consider a unique translation of X that sends \(\phi ({\mathcal {O}})\) to \({\mathcal {O}}'\), and assume \(\phi ({\mathcal {O}})={\mathcal {O}}'\). By using the group isomorphisms

$$\begin{aligned} E[m]\simeq Aut((E\backslash E[m])/(E\backslash {\mathcal {O}})) \ (Q \mapsto (R \mapsto R+Q) ) \end{aligned}$$

and

$$\begin{aligned} X[m]\simeq Aut((X\backslash X[m])/(X\backslash \mathcal {O'}), \end{aligned}$$

we see that \(\phi \) is a group isomorphism.

By taking suitable closed immersions to \({\mathbb {P}}^{2}\), we may assume that X is defined by \(y^{2}=x(x-1)(x-\lambda )\), \({\mathcal {O}}'=\infty \), E is defined by \(y^{2}=x(x-1)(x-\lambda _{E})\), \({\mathcal {O}}=\infty \), \(\phi ((\lambda _{E} , 0))= (\lambda , 0)\) and \(\phi ((i,0)) = (i,0) \ \ (i=0,1)\).

For any \(P \in k \simeq {\mathbb {P}}^{1}(k)\backslash \{ \infty \}\), let \(\alpha (P)\) (resp.\(\beta (P))\) be a point of E (resp.X) above P. For any P except \(0 , 1 , \lambda _{E}\) (resp. \(\lambda )\), there exist two points above P, but we choose \(\alpha \) and \(\beta \) that satisfy \(\phi (E[m]\cap Im(\alpha ))=X[m]\cap Im(\beta )\).

Set \(P , Q , P' , Q' \in {\mathbb {P}}^{1}(k)\backslash \{ \infty \}\). Suppose \(\alpha (P),\alpha (Q),\alpha (P+Q)\in E[m], \phi (\alpha (P))=\beta (P'), \ \phi (\alpha (Q))=\beta (Q')\). By the equation

$$\begin{aligned} x(\alpha (P+Q))-x(\alpha (P))-x(\alpha (Q))=0 \end{aligned}$$

and Corollaly 4.8, we have

$$\begin{aligned} x(\phi (\alpha (P+Q)))-x(\beta (P'))-x(\beta (Q'))=0. \end{aligned}$$

Thus,

$$\begin{aligned} \begin{aligned}&\alpha (P),\alpha (Q),\alpha (P+Q)\in E[m]\ , \ \phi (\alpha (P))=\beta (P') \ , \ \phi (\alpha (Q))=\beta (Q') \\&\quad \Rightarrow \phi (\alpha (P+Q))=\beta (P'+Q') \end{aligned} \end{aligned}$$

By [10] Theorem 1.16 (Addition theorem), for any \(a , b \in {\mathbb {F}}_{p}\) (\(b\ne 0\)),

$$\begin{aligned} \begin{aligned}&x(\alpha (aP)+\alpha (aP+b))+x(\alpha (aP)-\alpha (aP+b))\\&\quad = \frac{4}{b^{2}}a^{3}P^{3}+\left( \frac{6}{b}-\frac{4\lambda _{E}}{b^{2}}-\frac{4}{b^{2}}\right) a^{2}P^{2}\\&\qquad +\left( 2-\frac{4}{b}-\frac{4\lambda _{E}}{b}+\frac{4\lambda _{E}}{b^{2}}\right) aP +\frac{2\lambda _{E}}{b} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&x(\beta (aP')+\beta (aP'+b))+x(\beta (aP')-\beta (aP'+b))\\&\quad =\frac{4}{b^{2}}a^{3}P'^{3}+\left( \frac{6}{b}-\frac{4\lambda }{b^{2}} -\frac{4}{b^{2}}\right) a^{2}P'^{2}\\&\qquad +\left( 2-\frac{4}{b} -\frac{4\lambda }{b}+\frac{4\lambda }{b^{2}}\right) aP'+\frac{2\lambda }{b} \end{aligned} \end{aligned}$$

Suppose \(a=\pm 1 , \ b=1\). Then

$$\begin{aligned} \begin{aligned}&(x(\alpha (P)+\alpha (P+1))+x(\alpha (P)-\alpha (P+1))\\&\qquad + x(\alpha (-P)+\alpha (-P+1))+x(\alpha (-P)-\alpha (-P+1)))\\&\quad =-8\lambda _{E}P^{2}+4P^{2}+4\lambda _{E} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&x(\beta (P')+\beta (P'+1))+x(\beta (P')-\beta (P'+1))\\&\qquad + x(\beta (-P')+\beta (-P'+1))+x(\beta (-P')-\beta (-P'+1))\\&\quad =-8\lambda P'^{2}+4P'^{2}+4\lambda \end{aligned} \end{aligned}$$

Therefore, by Corollary 4.8,

$$\begin{aligned} \begin{aligned}&\alpha (\pm P),\alpha (\pm P+1),\alpha (P^{2}),\alpha (\lambda _{E}P^{2})\in E[m], \\&\quad \phi (\alpha (P))=\beta (P') \ , \ \phi (\alpha (P^{2}))=\beta (P'^{2})\\&\quad \Rightarrow \ \phi (\alpha (\lambda _{E}P^{2}))=\beta (\lambda P'^{2}) \end{aligned} \end{aligned}$$
(3)

Suppose \(a=1 , \ b=\pm 1\). Then

$$\begin{aligned} \begin{aligned}&x(\alpha (P)+\alpha (P+1))+x(\alpha (P)-\alpha (P+1))\\&\qquad - x(\alpha (P)+\alpha (P-1))-x(\alpha (P)-\alpha (P-1))\\&\quad =12P^{2}-8\lambda _{E}P-8P +4\lambda _{E} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&x(\beta (P')+\beta (P'+1))+x(\beta (P')-\beta (P'+1))\\&\qquad - x(\beta (P')+\beta (P'-1))-x(\beta (P')-\beta (P'-1))\\&\quad =12P'^{2}-8\lambda P'-8P'+4\lambda \end{aligned} \end{aligned}$$

Therefore, by Corollary 4.8, when \(p\ne 3\),

$$\begin{aligned} \begin{aligned}&\alpha (P),\alpha (P\pm 1),\alpha (\lambda _{E}P),\alpha (P^{2}) \in E[m] \\&\quad \phi (\alpha (P))=\beta (P') \ , \ \phi (\alpha (\lambda _{E}P))=\beta (\lambda _{E}P')\\&\quad \Rightarrow \phi (\alpha (P^{2}))=\beta (P'^{2}) \end{aligned} \end{aligned}$$
(4)

When \(p=3\),

$$\begin{aligned} \begin{aligned}&\alpha (P),\alpha (P\pm 1),\alpha (\lambda _{E}P) \in E[m] \ , \ \phi (\alpha (P))=\beta (P')\\&\quad \Rightarrow \phi (\alpha (\lambda _{E}P))=\beta (\lambda P') \end{aligned} \end{aligned}$$
(5)

By using [10] Theorem 1.16 (Addition theorem) again, we have

$$\begin{aligned} \begin{aligned}&x(\alpha (\lambda _{E})+\alpha (\lambda _{E}+1))=\lambda _{E}^{2}\\&x(\beta (\lambda )+\beta (\lambda +1))=\lambda ^{2} \end{aligned} \end{aligned}$$

Therefore, by Corollary 4.8,

$$\begin{aligned} \alpha (\lambda _{E}+1),\alpha (\lambda _{E}^{2}) \in E[m] \Rightarrow \ \phi (\alpha (\lambda _{E}^{2}))=\beta (\lambda ^{2}) \end{aligned}$$
(6)

Let f be the minimal polynomial of \(\lambda _{E}\) over \({\mathbb {F}}_{p}\). We take m such that \(\alpha (-\lambda _{E}),\alpha (\lambda _{E}- 1),\alpha (\pm \lambda _{E}+1), \alpha (\pm \lambda _{E}^{2}),\alpha (\lambda _{E}^{2}- 1),\alpha (\pm \lambda _{E}^{2}+1), \alpha (\pm \lambda _{E}^{3}),\ldots , \alpha (\pm \lambda _{E}^{degf-1}),\alpha (\lambda _{E}^{degf-1}- 1),\alpha (\pm \lambda _{E}^{degf-1}+1),\alpha (\lambda _{E}^{degf})\in E[m]\). We will prove \(\phi (\alpha (\lambda _{E}^{i}))=\beta (\lambda ^{i}) \ \ (i=0,1,\ldots , degf)\) by induction.

Suppose \(p=3\).

By (5), for any \(i=1,2,\ldots , degf-1\),

$$\begin{aligned} \phi (\alpha (\lambda _{E}^{i}))=\beta (\lambda ^{i})\Rightarrow \phi (\alpha (\lambda _{E}^{i+1}))=\beta (\lambda ^{i+1}) \ \end{aligned}$$

Thus, by induction, we have \(\phi (\alpha (\lambda _{E}^{i}))=\beta (\lambda ^{i}) \ \ (i=0,1,\ldots , degf)\).

Suppose \(p\ne 3\).

By (3), for any \(i=1,2,\ldots , degf-1\),

$$\begin{aligned} \begin{aligned}&i \equiv 0 \ mod \ 2, \ \phi (\alpha (\lambda _{E}^{i/2}))=\beta (\lambda ^{i/2}), \ \phi (\alpha (\lambda _{E}^{i}))=\beta (\lambda ^{i}) \\&\quad \Rightarrow \phi (\alpha (\lambda _{E}^{i+1}))=\beta (\lambda ^{i+1}) \end{aligned} \end{aligned}$$

By (4),

$$\begin{aligned} \begin{aligned}&i \equiv 1 \ mod \ 2, \ i \ne 1,\\&\quad \phi (\alpha (\lambda _{E}^{(i+1)/2}))=\beta (\lambda ^{(i+1)/2}), \ \phi (\alpha (\lambda _{E}^{(i+3)/2}))=\beta (\lambda ^{(i+3)/2}) \\&\quad \Rightarrow \phi (\alpha (\lambda _{E}^{i+1}))=\beta (\lambda ^{i+1}) \end{aligned} \end{aligned}$$

By (6),

$$\begin{aligned} i=1 \Rightarrow \phi (\alpha (\lambda _{E}^{i+1}))=\beta (\lambda ^{i+1}) \end{aligned}$$

Thus, by induction, we have \(\phi (\alpha (\lambda _{E}^{i}))=\beta (\lambda ^{i}) \ \ (i=0,1,\ldots , degf)\).

By Corollary 4.8, we conclude \(f(\lambda )=0\). Therefore there exists an isomorphism \(\varphi : k \simeq k\) that satisfies \(\varphi (\lambda _{E})=\lambda \). Thus,

$$\begin{aligned} E\backslash \{ {\mathcal {O}} \} \simeq (E\backslash \{ {\mathcal {O}} \})\times _{k,\varphi }k \simeq U \end{aligned}$$

\(\square \)

Corollary 4.10

Supose that there exists a curve \(E'\) over F that satisfies \(E\simeq E'\times _{F}k\). Let \(S\subset E(k)\) be a finite set that is not empty and U a curve over k. Then the following implication holds.

$$\begin{aligned} \pi _{1}(U)\simeq \pi _{1}(E\backslash S) \Rightarrow U^{cpt} \simeq E \ (\mathrm{as\ schemes}) \end{aligned}$$

Proof

Fix \(P \in S\). By Theorem 2.1, the isomorphism \(\pi _{1}(U)\simeq \pi _{1}(E\backslash S)\) induces an isomorphism \(\pi _{1}(U^{cpt}\backslash P')\simeq \pi _{1}(E\backslash {\mathcal {P}})\) for some \(P' \in (U^{cpt} \backslash U)(k)\). By applying Theorem 4.9 to the latter isomorphism, we obtain \(U^{cpt}\backslash P' \simeq E\backslash P\), hence \(U^{cpt}\simeq E\). \(\square \)

Remark 4.11

We established the results of Sect. 3 for hyperelliptic curves. However, in order to generalize the results of Sect.  4 to hyperelliptic curves, there remain (at least) two difficulties for the present. First, we need to generalize Theorem 4.3 to recover \(L_{U} \subset \pi _{1}(U)\). Second, we need to generalize the \(\lambda \) -invariant and the Addition Theorem ([10] Theorem 1.16) of elliptic curves in the case of hyperelliptic curves.