Skip to main content
Log in

The Effect of Low Temperature Range Heat Treatment on the Residual Stress of Cold Gas Dynamic Sprayed Inconel 718 Coatings via Neutron Diffraction

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

There has been considerable interest in the application of cold gas dynamic spray (CGDS) to deposit nickel-based superalloy coatings for the repair and development of high-value components that operate under extreme environmental conditions. The CGDS process introduces residual stresses in the coating layers, but inherently effects the subsurface of the substrate in a similar manner. The present study investigates the effect of low temperature range heat treatments (100-400 °C) on the residual stress of CGDS Inconel® 718 deposited onto a presolution-treated Al7075-T651 substrate. High spatial resolution nondestructive residual stress measurements were carried out via neutron diffraction on both the CGDS deposit and substrate. The low temperature range heat treatments displayed a significant effect on both the substrate and coatings. Residual stress relaxation was exhibited in coatings that were heat-treated at the lowest temperature, whereas an increased heat treatment temperature displayed an opposite effect, increasing both the compressive residual stress in the IN718 coating and the residual tensile stress in the substrate. It is proposed the difference in thermal expansion coefficient of the two materials was the main factor responsible for the residual stresses. The effect of post-heat treatment on coating microhardness and porosity is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006

    Google Scholar 

  2. P.J. Withers, Residual Stress and Its Role in Failure, Rep. Prog. Phys., 2007, 70(12), p 2211-2264

    Google Scholar 

  3. S. Sampath, X.Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya, Role of Thermal Spray Processing Method on the Microstructure, Residual Stress and Properties of Coatings: An Integrated Study for Ni-5 Wt%Al Bond Coats, Mater. Sci. Eng. A, 2004, 364(1–2), p 216-231

    Google Scholar 

  4. V. Luzin, A. Valarezo, and S. Sampath, Through-Thickness Residual Stress Measurement in Metal and Ceramic Spray Coatings by Neutron Diffraction, Mater. Sci. Forum, 2008, 571–572, p 315-320

    Google Scholar 

  5. V. Luzin, H.-J. Prask, T. Gnaupel-Herold, and S. Sampath, Use of Neutron Diffraction for Stress Measurements in Thin and Thick Thermal Sprayed Coatings, Int. Heat Treat. Surf. Eng., 2010, 4(1), p 17-24

    Google Scholar 

  6. J. Matejicek, S. Sampath, P.C. Brand, and H.J. Prask, Quenching, Thermal and Residual Stress in Plasma Sprayed Deposits: NiCrAlY and YSZ Coatings, Acta Mater., 1999, 47(2), p 607-617

    CAS  Google Scholar 

  7. S.J. Howard, Y.C. Tsui, and T.W. Clyne, The Effect of Residual Stresses on the Debonding of Coatings—I. A Model for Delamination at a Bimaterial Interface, Acta Metall. Mater., 1994, 42(8), p 2823-2836

    Google Scholar 

  8. P. Chraska, J. Dubsky, B. Kolman, J. Llavsky, and J. Forman, Study of Phase Changes in Plasma Sprayed Deposits, J. Therm. Spray Technol., 1992, 1(4), p 301-306

    CAS  Google Scholar 

  9. H.G. Chun, T.Y. Cho, J.H. Yoon, and G.H. Lee, Improvement of Surface Properties of Inconel718 by HVOF Coating with WC-Metal Powder and by Laser Heat Treatment of the Coating, Adv. Mater. Sci. Eng., 2015, 2015, p e468120

    Google Scholar 

  10. A. Babilius, Influence of Temperature on the Phases Changes of HVOF Sprayed Tungsten Carbide Coatings (Kaunas University of Technology, Lithuania, 2003). http://www.matsc.ktu.lt/index.php/MatSc/article/view/26701

  11. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Philadelphia, 2004

    Google Scholar 

  12. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Overview of Thermal Spray, Thermal Spray Fundamentals, P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Ed., Springer, Boston, 2014, p 17-72

    Google Scholar 

  13. Y.C. Tsui, C. Doyle, and T.W. Clyne, Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates Part 1: Mechanical Properties and Residual Stress Levels, Biomaterials, 1998, 19(22), p 2015-2029

    CAS  Google Scholar 

  14. J. Matejícek, S. Sampath, and J. Dubsky, X-ray Residual Stress Measurement in Metallic and Ceramic Plasma Sprayed Coatings, J. Therm. Spray Technol., 1998, 7(4), p 489-496

    Google Scholar 

  15. A.M. Venter, T. Pirling, T. Buslaps, O.P. Oladijo, A. Steuwer, T.P. Ntsoane, L.A. Cornish, and N. Sacks, Systematic Investigation of Residual Strains Associated with WC–Co Coatings Thermal Sprayed onto Metal Substrates, Surf. Coat. Technol., 2012, 206(19–20), p 4011-4020

    CAS  Google Scholar 

  16. J. Stokes and L. Looney, Residual Stress in HVOF Thermally Sprayed Thick Deposits, Surf. Coat. Technol., 2004, 177–178, p 18-23

    Google Scholar 

  17. C.R.C. Lima, J. Nin, and J.M. Guilemany, Evaluation of Residual Stresses of Thermal Barrier Coatings with HVOF Thermally Sprayed Bond Coats Using the Modified Layer Removal Method (MLRM), Surf. Coat. Technol., 2006, 200(20–21), p 5963-5972

    CAS  Google Scholar 

  18. V. Luzin, K. Spencer, and M.-X. Zhang, Residual Stress and Thermo-Mechanical Properties of Cold Spray Metal Coatings, Acta Mater., 2011, 59(3), p 1259-1270

    CAS  Google Scholar 

  19. K. Spencer, V. Luzin, N. Matthews, and M.-X. Zhang, Residual Stresses in Cold Spray Al Coatings: The Effect of Alloying and of Process Parameters, Surf. Coat. Technol., 2012, 206(19–20), p 4249-4255

    CAS  Google Scholar 

  20. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401

    CAS  Google Scholar 

  21. D. Srinivasan, V. Chandrasekhar, R. Amuthan, Y.C. Lau, and E. Calla, Characterization of Cold-Sprayed IN625 and NiCr Coatings, J. Therm. Spray Technol., 2016, 25(4), p 725-744

    CAS  Google Scholar 

  22. S. Bagherifard, G. Roscioli, M.V. Zuccoli, M. Hadi, G. D’Elia, A.G. Demir, B. Previtali, J. Kondás, and M. Guagliano, Cold Spray Deposition of Freestanding Inconel Samples and Comparative Analysis with Selective Laser Melting, J. Therm. Spray Technol., 2017, 26(7), p 1517-1526

    CAS  Google Scholar 

  23. E.M. Johnson, T.R. Watkins, J.E. Schmidlin, and S.A. Dutler, A Benchmark Study on Casting Residual Stress, Metall. Mater. Trans. A, 2012, 43(5), p 1487-1496

    CAS  Google Scholar 

  24. T. Berruti, M. Lavella, and M.M. Gola, Residual Stresses on Inconel 718 Turbine Shaft Samples After Turning, Mach. Sci. Technol., 2009, 13(4), p 543-560

    CAS  Google Scholar 

  25. B.J. Foss, S. Gray, M.C. Hardy, S. Stekovic, D.S. McPhail, and B.A. Shollock, Analysis of Shot-Peening and Residual Stress Relaxation in the Nickel-Based Superalloy RR1000, Acta Mater., 2013, 61(7), p 2548-2559

    CAS  Google Scholar 

  26. P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress Part 1—Measurement Techniques, Mater. Sci. Technol., 2001, 17(4), p 355-365

    CAS  Google Scholar 

  27. R.L. Mattson and J.G. Roberts, The Effect of Residual Stresses Induced by Strain-Peening Upon Fatigue Strength, vol. 68 (SAE International, SAE Transactions, Warrendale, 1960), pp. 130–136. https://www.jstor.org/stable/44565121?seq=1#metadata_info_tab_contents

  28. P. Prevéy, J. Telesman, T. Gabb, and P. Kantzos, FOD Resistance and Fatigue Crack Arrest in Low Plasticity Burnished IN718, in Proceedings of the 5th National Turbine Engineering HCF Conference, (Chandler, AZ)

  29. P. Prevéy, The Effect of Cold Work on the Thermal Stability of Residual Compression in Surface Enhanced IN718, in HeatTreating 2000: Proceedings of the 20th Conference (ASM International, Materials Park), p 426–434

  30. R.M. Arunachalam, M.A. Mannan, and A.C. Spowage, Residual Stress and Surface Roughness When Facing Age Hardened Inconel 718 with CBN and Ceramic Cutting Tools, Int. J. Mach. Tools Manuf., 2004, 44(9), p 879-887

    Google Scholar 

  31. R. M’Saoubi, D. Axinte, C. Herbert, M. Hardy, and P. Salmon, Surface Integrity of Nickel-Based Alloys Subjected to Severe Plastic Deformation by Abusive Drilling, CIRP Ann., 2014, 63(1), p 61-64

    Google Scholar 

  32. E. Brinksmeier and H.K. Tönshoff, X-ray Stress Measurement—A Tool for the Study and Layout of Machining Processes, CIRP Ann. Manuf. Technol., 1985, 34(1), p 485-490

    Google Scholar 

  33. I.C. Noyan and J.B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation, Springer, New York, 1987

    Google Scholar 

  34. A. Allen, C. Andreani, M.T. Hutchings, and C.G. Windsor, Measurement of Internal Stress within Bulk Materials Using Neutron Diffraction, NDT Int., 1981, 14(5), p 249-254

    Google Scholar 

  35. L. Pintschovius, V. Jung, E. Macherauch, R. Schäfer, and O. Vöhringer, Determination of Residual Stress Distributions in the Interior of Technical Parts by Means of Neutron Diffraction, Residual Stress and Stress Relaxation, E. Kula and V. Weiss, Ed., Springer, Berlin, 1982, p 467-482

    Google Scholar 

  36. R. Ahmed, H. Yu, S. Stewart, L. Edwards, and J.R. Santisteban, Residual Strain Measurements in Thermal Spray Cermet Coatings via Neutron Diffraction, J. Tribol., 2007, 129(2), p 411-418

    CAS  Google Scholar 

  37. M.E. Fitzpatrick and A. Lodini, Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation, Taylor & Francis, London, 2003

    Google Scholar 

  38. V. Luzin, A. Vackel, A. Valarezo, and S. Sampath, Neutron Through-Thickness Stress Measurements in Coatings with High Spatial Resolution, Mater. Sci. Forum, 2017, 905, p 165-173

    Google Scholar 

  39. S.Y. Kim, Residual Stress and Finite Element Analysis of Cold Gas Dynamic Sprayed Nickel Based Superalloys. Ph.D. Thesis, Swinburne University of Technology, 2017

  40. X. Wang, B. Zhang, J. Lv, and S. Yin, Investigation on the Clogging Behavior and Additional Wall Cooling for the Axial-Injection Cold Spray Nozzle, J. Therm. Spray Technol., 2015, 24(4), p 696-701

    Google Scholar 

  41. V. Luzin, K. Spencer, M. Zhang, N. Matthews, J. Davis, and M. Saleh, Residual Stresses in Cold Spray Coatings, Cold-Spray Coatings, P. Cavaliere, Ed., Springer, Cham, 2018, p 451-480

    Google Scholar 

  42. W.B. Choi, L. Li, V. Luzin, R. Neiser, T. Gnäupel-Herold, H.J. Prask, S. Sampath, and A. Gouldstone, Integrated Characterization of Cold Sprayed Aluminum Coatings, Acta Mater., 2007, 55(3), p 857-866

    CAS  Google Scholar 

  43. T. Gnäupel-Herold, ISODEC: Software for Calculating Diffraction Elastic Constants, J. Appl. Crystallogr., 2012, 45(3), p 573-574

    Google Scholar 

  44. N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Trans. Syst. Man Cybern., 1979, 9(1), p 62-66

    Google Scholar 

  45. Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part 1: Planar Geometry, Thin Solid Films, 1997, 306(1), p 23-33

    CAS  Google Scholar 

  46. Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part 2: Cylindrical Geometry, Thin Solid Films, 1997, 306(1), p 34-51

    CAS  Google Scholar 

  47. Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part 3: Further Development and Applications, Thin Solid Films, 1997, 306(1), p 52-61

    CAS  Google Scholar 

  48. J. Pina, A. Dias, and J.L. Lebrun, Study by X-ray Diffraction and Mechanical Analysis of the Residual Stress Generation during Thermal Spraying, Mater. Sci. Eng. A, 2003, 347(1), p 21-31

    Google Scholar 

  49. C.B. Reducing the Susceptibility of Alloys, Particularly Aluminium Alloys, to Stress Corrosion Cracking, U.S. Patent 3,856,584 A, 1974

  50. J.K. Park and A.J. Ardell, Effect of Retrogression and Reaging Treatments on the Microstructure of AL-7075-T651, Metall. Trans. A, 1984, 15(8), p 1531-1543

    Google Scholar 

  51. J.M. Papazian, The Effects of Warm Working on Aluminum Alloy 7075-T651, Mater. Sci. Eng., 1981, 51(2), p 223-230

    CAS  Google Scholar 

  52. M.S. Younger and K.H. Eckelmeyer, Overcoming Residual Stresses and Machining Distortion in the Production of Aluminum Alloy Satellite Boxes (Sandia National Laboratories, United States, 2007). https://www.osti.gov/biblio/922073/

  53. R.T. Holt, R. Wallace, W. Wallace, and D.L. DuQuesnay, RRA Heat Treatment of Large Al 7075-T6 Components (NATO, 2000). https://apps.dtic.mil/sti/citations/ADP010412

  54. C.K. Lin and C.C. Berndt, Statistical Analysis of Microhardness Variations in Thermal Spray Coatings, J. Mater. Sci., 1995, 30(1), p 111-117

    CAS  Google Scholar 

  55. T. Valente, Statistical Evaluation of Vicker’s Indentation Test Results for Thermally Sprayed Materials, Surf. Coat. Technol., 1997, 90(1–2), p 14-20

    CAS  Google Scholar 

  56. M. Factor and I. Roman, Vickers Microindentation of WC–12%Co Thermal Spray Coating: Part 1: Statistical Analysis of Microhardness Data, Surf. Coat. Technol., 2000, 132(2–3), p 181-193

    CAS  Google Scholar 

  57. D.D. Keiser and H.L. Brown, Review of the Physical Metallurgy of Alloy 718, ANCR–1292, 1976

  58. A. Oradei-Basile and J.F. Radavich, A Current T–T–T Diagram for Wrought Alloy 718, in Superalloys 718, 625 and Various Derivatives (1991), 1991 TMS, 1991, p 325–335

  59. S. Carlsson and P.-L. Larsson, On the Determination of Residual Stress and Strain Fields by Sharp Indentation Testing. Part I: Theoretical and Numerical Analysis, Acta Mater., 2001, 49(12), p 2179-2191

    CAS  Google Scholar 

  60. S. Suresh and A.E. Giannakopoulos, A New Method for Estimating Residual Stresses by Instrumented Sharp Indentation, Acta Mater., 1998, 46(16), p 5755-5767

    CAS  Google Scholar 

  61. P. Sudharshan Phani, D. Srinivasa Rao, S.V. Joshi, and G. Sundararajan, Effect of Process Parameters and Heat Treatments on Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Technol., 2007, 16(3), p 425-434

    Google Scholar 

  62. B. AL-Mangour, P. Vo, R. Mongrain, E. Irissou, and S. Yue, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications, J. Therm. Spray Technol., 2014, 23(4), p 641-652

    CAS  Google Scholar 

  63. S.H. Zahiri, C.I. Antonio, and M. Jahedi, Elimination of Porosity in Directly Fabricated Titanium via Cold Gas Dynamic Spraying, J. Mater. Process. Technol., 2009, 209(2), p 922-929

    CAS  Google Scholar 

  64. K. Ogawa and T. Niki, Repairing of Degraded Hot Section Parts of Gas Turbines by Cold Spraying, Key Eng. Mater., 2009, 417–418, p 545-548

    Google Scholar 

  65. K. Ogawa and D. Seo, Repair of Turbine Blades Using Cold Spray Technique, Advances in Gas Turbine Technology, E. Benini, Ed., InTech, London, 2011,

    Google Scholar 

  66. J.-M. Baik, J. Kameda, and O. Buck, Small Punch Test Evaluation of Intergranular Embrittlement of an Alloy Steel, Scr. Metall., 1983, 17(12), p 1443-1447

    CAS  Google Scholar 

  67. W. Wong, E. Irissou, J.-G. Legoux, F. Bernier, P. Vo, S. Yue, S. Michiyoshi, and H. Fukanuma, Cold Spray Forming of Inconel 718, Thermal Spray 2012, in Proceedings of the International Thermal Spray Conference, May 2012 (Houston, Texas USA), ASM International, Materials Park, 2012, p 243–248

  68. W. Wong, E. Irissou, P. Vo, M. Sone, F. Bernier, J.-G. Legoux, H. Fukanuma, and S. Yue, Cold Spray Forming of Inconel 718, J. Therm. Spray Technol., 2013, 22(2–3), p 413-421

    CAS  Google Scholar 

  69. D. Levasseur, S. Yue, and M. Brochu, Pressureless Sintering of Cold Sprayed Inconel 718 Deposit, Mater. Sci. Eng. A, 2012, 556, p 343-350

    CAS  Google Scholar 

  70. M. Okazaki, High-Temperature Strength of Ni-Base Superalloy Coatings, Sci. Technol. Adv. Mater., 2001, 2(2), p 357-366

    CAS  Google Scholar 

  71. J. Henao, A. Concustell, I.G. Cano, N. Cinca, S. Dosta, and J.M. Guilemany, Influence of Cold Gas Spray Process Conditions on the Microstructure of Fe-Based Amorphous Coatings, J. Alloys Compd., 2015, 622, p 995-999

    CAS  Google Scholar 

  72. S. Singh, Y. Guo, B. Winiarski, T.L. Burnett, P.J. Withers, and M. De Graef, High Resolution Low KV EBSD of Heavily Deformed and Nanocrystalline Aluminium by Dictionary-Based Indexing, Sci. Rep., 2018, 8(1), p 10991

    Google Scholar 

  73. J. Waldman, H. Sulinski, and H. Markus, The Effect of Ingot Processing Treatments on the Grain Size and Properties of Al Alloy 7075, Metall. Trans., 1974, 5(3), p 573-584

    CAS  Google Scholar 

  74. J.-L. Fu, H.-J. Jiang, and K.-K. Wang, Influence of Processing Parameters on Microstructural Evolution and Tensile Properties for 7075 Al Alloy Prepared by an ECAP-Based SIMA Process, Acta Metall. Sin. Engl. Lett., 2018, 31(4), p 337-350

    CAS  Google Scholar 

  75. R. Cottam, V. Luzin, Q. Liu, Y.C. Wong, J. Wang, and M. Brandt, Investigation into Heat Treatment and Residual Stress in Laser Clad AA7075 Powder on AA7075 Substrate, Metallogr. Microstruct. Anal., 2013, 2(4), p 205-212

    CAS  Google Scholar 

  76. J.-Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium, Acta Mater., 2003, 51(3), p 713-729

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Peter Lock and Dr. Julian Ratcliffe from the La Trobe Institute of Molecular Science (LIMS) Bioimaging Platform for their assistance. The authors would also like to express their gratitude to The Australian Institute of Nuclear Science and Engineering (AINSE) for their support in funding travel and accommodation to undertake the neutron diffraction residual stress experiment through proposal P3628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Yung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Residual Stresses Credit Line: This article is part of a special topical focus in the Journal of Thermal Spray Technology on Advanced Residual Stress Analysis in Thermal Spray and Cold Spray Processes. This issue was organized by Dr. Vladimir Luzin, Australian Centre for Neutron Scattering; Dr. Seiji Kuroda, National Institute of Materials Science; Dr. Shuo Yin, Trinity College Dublin; and Dr. Andrew Ang, Swinburne University of Technology.

This work is based on a thesis submitted by Sun Yung Kim in partial fulfilment of the requirements for the degree of Doctor of Philosophy in mechanical/materials engineering, Swinburne University of Technology, June 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Luzin, V., Sesso, M.L. et al. The Effect of Low Temperature Range Heat Treatment on the Residual Stress of Cold Gas Dynamic Sprayed Inconel 718 Coatings via Neutron Diffraction. J Therm Spray Tech 29, 1477–1497 (2020). https://doi.org/10.1007/s11666-020-01080-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01080-z

Keywords

Navigation