Skip to main content
Log in

Single-ion activity: a nonthermodynamically measurable quantity

  • Feature Article
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ionic liquid salt bridge (ILSB) that effectively minimizes the liquid junction potential in a galvanic cell articulates the nonthermodynamic measurability of single-ion activity. Points for further improvement of the stability of ILSB are summarized, and associated intriguing phenomena at the ILSB-W interface are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anes B, Silva RJNB, Oliveira C, Camoes MF (2019) Seawater pH measurements with a combination glass electrode and high ionic strength tris-tris hcl reference buffers—an uncertainty evaluation approach. Talanta 193:118–122

    Article  CAS  Google Scholar 

  2. Camoes F, Anes B, Martins H, Oliveira C, Fisicaro P, Stoica D, Spitzer P (2016) Assessment of H+ in complex aqueous solutions approaching seawater. J Electroanal Chem 764:88–92

    Article  CAS  Google Scholar 

  3. de Levie R (2014) A pH centenary. Electrochim Acta 135:604–639

    Article  Google Scholar 

  4. de Levie R (2017) Electroanalytical obscurity an alternative view. Rev Polarogr 63(2):69–87

    Article  Google Scholar 

  5. Eriksen DK, Lazarou G, Galindo A, Jackson G, Adjiman CS, Haslam AJ (2016) Development of intermolecular potential models for electrolyte solutions using an electrolyte SAFT-VR Mie equation of state. Mol Phys 114(18):2724–2749

    Article  CAS  Google Scholar 

  6. Ermantraut A, Radtke V, Gebel N, Himmel D, Koslowski T, Leito I, Krossing I (2018) The ideal ionic liquid salt bridge for direct determination of Gibbs energies of transfer of single ions, part II: evaluation of the role of ion solvation and ion mobilities. Angew Chem-Int Edit 57(9):2348–2352

    Article  CAS  Google Scholar 

  7. Fraenkel D (2010) Simplified electrostatic model for the thermodynamic excess potentials of binary strong electrolyte solutions with size-dissimilar ions. Mol Phys 108(11):1435–1466

    Article  CAS  Google Scholar 

  8. Fraenkel D (2011) Monoprotic mineral acids analyzed by the smaller-ion shell model of strong electrolyte solutions. J Phys Chem B 115:557–568

    Article  CAS  Google Scholar 

  9. Fraenkel D (2015) Computing excess functions of ionic solutions: the smaller-ion shell model versus the primitive model. 1. Activity coefficients. J Chem Theory Comput 11(1):178–192

    Article  CAS  Google Scholar 

  10. Fujino Y, Kakiuchi T (2011) Ionic liquid salt bridge based on n-alkyl-n-methylpyrrolidinium bis(pentafluoroethanesulfonyl)amide for low ionic strength aqueous solutions. J Electroanal Chem 651 (1):61–66

    Article  CAS  Google Scholar 

  11. Harned HS, Ehlers RW (1932) The dissociation constant of acetic acid from 0 to 35 centigrade. J Am Chem Soc 54:1350–1357

    Article  CAS  Google Scholar 

  12. Kakiuchi T (2002) Electrochemical instability of liquid|liquid interface in the presence of ionic-surfactant adsorption. J Electroanal Chem 536:63–69

    Article  CAS  Google Scholar 

  13. Kakiuchi T (2015) Obscurity in electroanalytical chemistry (english translation). Rev Polarogr 61:105–116

    Article  Google Scholar 

  14. Kakiuchi T (2017) Commenets to “Electroanalytical obscurity: an alternative view” by Robert de Levie. Rev Polarogr 63(2):89–100

    Article  Google Scholar 

  15. Kakiuchi T, Yoshimatsu T (2006) A new salt bridge based on the hydrophobic room-temperature molten salt. Bull Chem Soc Jpn 79(7):1017–1024

    Article  CAS  Google Scholar 

  16. Kakiuchi T, Tsujioka N, Kurita S, Iwami Y (2003) Phase-boundary potential across the nonpolarized interface between the room-temperature molten salt and water. Electrochem Commun 5(2):159–164

    Article  CAS  Google Scholar 

  17. Kakiuchi T, Shigematsu F, Kasahara T, Nishi N, Yamamoto M (2004) Electrocapillarity at the nonpolarized interface between the aqueous solution and the room-temperature molten salt composed of 1-octyl-3-methylimidazolium bis(pentafluoroethylsulfonyl)imide. Phys Chem Chem Phys 6 (18):4445–4449

    Article  CAS  Google Scholar 

  18. Kitazumi Y, Kakiuchi T (2011) Electrochemical instability in liquid-liquid two-phase systems. Bull Chem Soc Jpn 84(12):1312–1320

    Article  CAS  Google Scholar 

  19. Kudo Y, Shibata M, Nomura S, Ogawa N (2017) Application of a pH electrode incorporating an ionic liquid salt bridge to the measurement of rainwater samples. Anal Sci 33(6):739–742

    Article  CAS  Google Scholar 

  20. Lindner E, Guzinski M, Khan TA, Pendley BD (2019) Reference electrodes with ionic liquid salt bridge: when will these innovative novel reference electrodes gain broad acceptance? ACS Sens 4(3):549–561

    Article  CAS  Google Scholar 

  21. Liu JL, Eisenberg B (2015) Poisson-Fermi model of single ion activities in aqueous solutions. Chem Phys Lett 637:1–6

    Article  CAS  Google Scholar 

  22. May PM, Rowland D (2017) Thermodynamic modeling of aqueous electrolyte systems: current status. J Chem Eng Data 62(9):2481–2495

    Article  CAS  Google Scholar 

  23. McGuigan JAS, Kay JW, Elder HY (2016) Ionised concentrations in calcium and magnesium buffers: standards and precise measurement are mandatory. Prog Biophys Mol Biol 121(3):195–211

    Article  CAS  Google Scholar 

  24. Metcalf RC (1987) Accuracy of Ross pH combination electrodes in dilute sulfuric-acid standards. Analyst 112(11):1573–1577

    Article  CAS  Google Scholar 

  25. Mousavi MPS, El-Rahman MK, Tan EKW, Sigurslid HH, Arkan N, Lane JS, Whitesides GM, Buhlmann P (2019) Ionic liquid-based reference electrodes for miniaturized ion sensors: what can go wrong? Sens Actuator B-Chem 127112:301

    Google Scholar 

  26. Radtke V, Ermantraut A, Himmel D, Koslowski T, Leito I, Krossing I (2018) The ideal ionic liquid salt bridge for the direct determination of Gibbs energies of transfer of single ions, part I: the concept. Angew Chem-Int Edit 57(9):2344–2347

    Article  CAS  Google Scholar 

  27. Sakaida H, Kakiuchi T (2011) Determination of single-ion activities of H+ and Cl in aqueous hydrochloric acid solutions by use of an ionic liquid salt bridge. J Phys Chem B 115 (45):13222–13226

    Article  CAS  Google Scholar 

  28. Sakaida H, Kitazumi Y, Kakiuchi T (2010) Ionic liquid salt bridge based on tributyl(2-methoxyethyl)phosphonium bis(pentafluoroethanesulfonyl)amide for stable liquid junction potentials in highly diluted aqueous electrolyte solutions. Talanta 83(2):663–666

    Article  CAS  Google Scholar 

  29. Shibata M, Yamanuki M, Iwamoto Y, Nomura S, Kakiuchi T (2010) Stability of a Ag/AgCl reference electrode equipped with an ionic liquid salt bridge composed of 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)amide in potentiometry of ph standard buffers. Anal Sci 26(11):1203–1206

    Article  CAS  Google Scholar 

  30. Volia MF, Tereshatov EE, Boltoeva M, Folden CM (2020) Indium and thallium extraction into betainium bis(trifluoromethylsulfonyl)imide ionic liquid from aqueous hydrochloric acid media. New J Chem 44 (6):2527–2537

    Article  CAS  Google Scholar 

  31. Yoshimatsu T, Kakiuchi T (2007) Ionic liquid salt bridge in dilute aqueous solutions. Anal Sci 23(9):1049–1052

    Article  CAS  Google Scholar 

  32. Zhang LM, Miyazawa T, Kitazumi Y, Kakiuchi T (2012) Ionic liquid salt bridge with low solubility of water and stable liquid junction potential based on a mixture of a potential-determining salt and a highly hydrophobic ionic liquid. Anal Chem 84(7):3461–3464

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kakiuchi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakiuchi, T. Single-ion activity: a nonthermodynamically measurable quantity. J Solid State Electrochem 24, 2093–2095 (2020). https://doi.org/10.1007/s10008-020-04758-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04758-0

Keywords

Navigation