Skip to main content
Log in

Electrochemical characteristics of the dynamic progression of erosion-corrosion under different flow conditions and their effects on corrosion rate calculation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The erosion-corrosion performance of X65 carbon steel at different flow conditions was electrochemically studied. Results show that the anodic polarization branch would have a significant distortion in the flowing electrolytes, leading to an overestimation of the Stern-Geary coefficient using the traditional Tafel extrapolation. It is found that the critical impact energy for the initiation of erosion-corrosion is around 0.016 μJ. Surface morphology was obviously changed from “flow mark” appearance to continuous craters with the initiation of erosion-corrosion. The results indicate that the synergy of erosion and corrosion is the main factor contributing to the erosion-corrosion damage under active corrosion. The dynamic progression of erosion-corrosion is associated with the propagation of impingement pits at anodic sites and the wear of the corrosion product film at cathodic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu L, Xu YZ, Xu CB, Wang XN, Huang Y (2019) Detecting and monitoring erosion-corrosion using ring pair electrical resistance sensor in conjunction with electrochemical measurements. Wear 428-429:328–339

    Article  CAS  Google Scholar 

  2. Elemuren R, Evitts R, Oguocha I, Kennell G, Gerspacher R, Odeshi A (2018) Slurry erosion-corrosion of 90° AISI 1018 steel elbow in saturated potash brine containing abrasive silica particles. Wear 410-411:149–155

    Article  CAS  Google Scholar 

  3. Sedano-de La Rosa C, Vite-Torres M, Godínez-Salcedo JG, Gallardo-Hernández EA, Cuamatzi-Melendez R, Farfán-Cabrera LI (2017) Erosion-corrosion of X-52 steel pipe under turbulent swirling impinging jets. Wear 376-377:549–556

    Article  CAS  Google Scholar 

  4. Guo HX, Lu BT, Luo JL (2005) Interaction of mechanical and electrochemical factors in erosion-corrosion of carbon steel. Electrochim Acta 51(2):315–323

    Article  CAS  Google Scholar 

  5. Yang Y, Cheng YF (2012) Parametric effects on the erosion-corrosion rate and mechanism of carbon steel pipes in oil sands slurry. Wear 276-277:141–148

    Article  CAS  Google Scholar 

  6. Tan KS, Wharton JA, Wood RJK (2005) Solid particle erosion-corrosion behaviour of a novel HVOF nickel aluminium bronze coating for marine applications—correlation between mass loss and electrochemical measurements. Wear 258(1-4):629–640

    Article  CAS  Google Scholar 

  7. Zheng ZB, Zheng YG, Zhou X, He SY, Sun WH, Wang JQ (2014) Determination of the critical flow velocities for erosion-corrosion of passive materials under impingement by NaCl solution containing sand. Corros Sci 88:187–196

    Article  CAS  Google Scholar 

  8. Lu BT, Luo JL, Mohammadi F, Wang K, Wan XM (2008) Correlation between repassivation kinetics and corrosion rate over a passive surface in flowing slurry. Electrochim Acta 53(23):7022–7031

    Article  CAS  Google Scholar 

  9. Guo HX, Lu BT, Luo JL (2006) Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis. Electrochim Acta 52(3):1108–1116

    Article  CAS  Google Scholar 

  10. Burstein GT, Sasaki K (2001) Detecting electrochemical transients generated by erosion-corrosion. Electrochim Acta 46(24-25):3675–3683

    Article  CAS  Google Scholar 

  11. Yi JZ, Hu HX, Wang ZB, Zheng YG (2018) Comparison of critical flow velocity for erosion-corrosion of six stainless steels in 3.5 wt% NaCl solution containing 2 wt% silica sand particles. Wear 416:62–71

    Article  Google Scholar 

  12. Wang ZB, Zheng YG, Yi JZ (2019) The role of surface film on the critical flow velocity for erosion-corrosion of pure titanium. Tribol Int 133:67–72

    Article  CAS  Google Scholar 

  13. Guo HX, Lu BT, Luo JL (2006) Non-Faraday material loss in flowing corrosive solution. Electrochim Acta 51(25):5341–5348

    Article  CAS  Google Scholar 

  14. Lu BT, Luo JL (2015) Correlation between surface-hardness degradation and erosion resistance of carbon steel—effects of slurry chemistry. Tribol Int 83:146–155

    Article  CAS  Google Scholar 

  15. Owen J, Ramsey C, Barker R, Neville A (2018) Erosion-corrosion interactions of X65 carbon steel in aqueous CO2 environments. Wear 414-415:376–389

    Article  CAS  Google Scholar 

  16. Xu YZ, Liu L, Zhou QP, Wang XN, Tan MY, Huang Y (2020) An overview of major experimental methods and apparatus for measuring and investigating erosion-corrosion of ferrous-based steels. Metals 10(2):180

    Article  CAS  Google Scholar 

  17. Lu BT, Luo JL (2006) Synergism of electrochemical and mechanical factors in erosion-corrosion. J Phys Chem B 110(9):4217–4231

    Article  CAS  Google Scholar 

  18. Xu Y, Tan MY (2019) Probing the initiation and propagation processes of flow accelerated corrosion and erosion corrosion under simulated turbulent flow conditions. Corros Sci 151:163–174

    Article  CAS  Google Scholar 

  19. Xu Y, Tan MY (2018) Visualising the dynamic processes of flow accelerated corrosion and erosion corrosion using an electrochemically integrated electrode array. Corros Sci 139:438–443

    Article  CAS  Google Scholar 

  20. Xu Y, Liu L, Zhou Q, Wang X, Huang Y (2020) Understanding the influences of pre-corrosion on the erosion-corrosion performance of pipeline steel. Wear 442-443:203151

    Article  CAS  Google Scholar 

  21. Malka R, Nešić S, Gulino DA (2007) Erosion-corrosion and synergistic effects in disturbed liquid-particle flow. Wear 262(7-8):791–799

    Article  CAS  Google Scholar 

  22. Dong CF, Xiao K, Li XG, Cheng YF (2010) Erosion accelerated corrosion of a carbon steel-stainless steel galvanic couple in a chloride solution. Wear 270(1-2):39–45

    Article  CAS  Google Scholar 

  23. Islam MA, Farhat Z (2017) Erosion-corrosion mechanism and comparison of erosion-corrosion performance of API steels. Wear 376-377:533–541

    Article  CAS  Google Scholar 

  24. Wharton JA, Wood RJK (2004) Influence of flow conditions on the corrosion of AISI 304L stainless steel. Wear 256(5):525–536

    Article  CAS  Google Scholar 

  25. Zhu YS, Xu YZ, Wang MY, Wang XN, Liu G, Huang Y (2019) Understanding the influences of temperature and microstructure on localized corrosion of subsea pipeline weldment using an integrated multi-electrode array. Ocean Eng 189:106351

    Article  Google Scholar 

  26. Lee SJ, Pyun SI, Yoon YG (2011) Pathways of diffusion mixed with subsequent reactions with examples of hydrogen extraction from hydride-forming electrode and oxygen reduction at gas diffusion electrode. J Solid State Electrochem 15(11-12):2437–2445

    Article  CAS  Google Scholar 

  27. Islam MA, Farhat ZN, Ahmed EM, Alfantazi AM (2013) Erosion enhanced corrosion and corrosion enhanced erosion of API X-70 pipeline steel. Wear 302(1-2):1592–1601

    Article  Google Scholar 

  28. Stern M (1957) Electrochemical polarization: II. Ferrous-Ferric electrode kinetics on stainless steel. J Electrochem Soc 104:559–563

    Article  CAS  Google Scholar 

  29. Xie J, Alpas AT, Northwood DO (2003) Mechano-electrochemical effect between erosion and corrosion. J Mater Sci 38(24):4849–4856

    Article  CAS  Google Scholar 

  30. Cao CN (2008) Principles of electrochemistry of corrosion. Chemical Industry Press, China

    Google Scholar 

  31. McCafferty E (2009) Introduction to corrosion science. Springer, Berlin

    Google Scholar 

  32. Pan C, Song Y, Jin W, Qin Z, Song S, Hu W, Xia DH (2020) Enhancing the stability of passive film on 304 SS by chemical modification in alkaline phosphate–molybdate solutions. Trans Tianjin Univ 26(2):135–141

    Article  CAS  Google Scholar 

  33. Wang K, Varela FB, Tan MY (2019) The effect of electrode surface area on corrosion initiation monitoring of X65 steel in soil. Corros Sci 152:218–225

    Article  CAS  Google Scholar 

  34. Xia DH, Song S, Qin Z, Hu W, Behnamian Y (2020) Review - electrochemical probes and sensors designed for time-dependent atmospheric corrosion monitoring: fundamentals, progress, and challenges. J Electrochem Soc 167(3):037513

    Article  CAS  Google Scholar 

  35. Zhu Y, Wang LX, Behnamian Y, Song SZ, Wang RQ, Gao ZM, Hu WB, Xia DH (2020) Metal pitting corrosion characterized by scanning acoustic microscopy and binary image processing. Corros Sci 170:108685

    Article  CAS  Google Scholar 

Download references

Funding

This research was sponsored by Key Projects in the National Science & Technology Pillar Program during the Thirteenth Five-year Plan Period of China (No. 2016ZX05057) and China Postdoctoral Science Foundation (Nos. 2019TQ0049, 2019M661101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mike Yongjun Tan or Yi Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, L., Xu, C. et al. Electrochemical characteristics of the dynamic progression of erosion-corrosion under different flow conditions and their effects on corrosion rate calculation. J Solid State Electrochem 24, 2511–2524 (2020). https://doi.org/10.1007/s10008-020-04795-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04795-9

Keywords

Navigation