Skip to main content
Log in

Arbuscular Mycorrhizal Fungi and K-Humate Combined as Biostimulants: Changes in Antioxidant Defense System and Radical Scavenging Capacity in Elaeagnus angustifolia

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) and potassium humate (KH) are separately known as significant biostimulants, but their combined effect on plants remains elusive. This study investigated the single and combined roles of AMF and KH on the antioxidant defense system in Russian olive (Elaeagnus angustifolia L.) leaves. Soil below the seeds was inoculated with indigenous AMF spores (Funneliformis, Claroideoglomus; 500 spores per seed). The KH (1.5 g/ per 1 kg of seed) was applied during sowing. Growth, leaf-water ratio, chlorophyll fluorescence, lipid peroxidation, H2O2 content, antioxidant enzymes, and antioxidant capacity were analyzed in treated and untreated plants. Combined AMF and KH applications had a greater recovery effect on vegetative organ growth than separate treatments. With combined treatment, plants maintained leaf water status and chlorophyll fluorescence, while peroxidation of lipid membranes and H2O2 content was reduced. Moreover, increases in superoxide dismutase and glutathione reductase activity prevented cellular damage from reactive oxygen species. Total phenolic content and antioxidant capacity values were remarkably higher in plants grown under the combined treatment. As a result, compared with their separate applications, a combination of AMF and KH enhanced the antioxidant defense system by increasing antioxidant enzymes and antioxidant capacity and, thus, could be used to enhance plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aalipour H, Nikbakht A, Ghasemi M, Amiri R (2020) Morpho-physiological and biochemical responses of two turfgrass species to arbuscular mycorrhizal fungi and humic acid under water stress condition. J Soil Sci Plant Nutr 20:566–576

    Article  CAS  Google Scholar 

  • Abbey L, Pham TH, Annan N, Leke-Aladekoba A, Thomas RH (2018) Chemical composition of kale as influenced by dry vermicast, potassium humate and volcanic minerals. Food Res Int 107:726–737

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7(6):636–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Akinci S, Büyükkeskin T, Eroğlu A, Erdoğan BE (2009) The effect of humic acid on nutrient composition in broad bean (Vicia faba L.) roots. Not Sci Biol 1:81–87

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant-Microbe Interact 15(4):334–340

    Article  CAS  PubMed  Google Scholar 

  • Apak R, Güçlü K, Özyürek M, Karademir SE (2004) A novel total antioxidant capacity index for dietary polyphenols, vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52:7970–7981

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Asli S, Neumann PM (2010) Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil 336:313–322

    Article  CAS  Google Scholar 

  • Avio L, Sbrana C, Giovannetti M, Frassinetti S (2017) Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci Hortic 224:265–271

    Article  CAS  Google Scholar 

  • Baldotto LEB, Baldotto MA (2014) Adventitious rooting on the Brazilian red-cloak and sanchezia after application of indole-butyric and humic acids. Hortic Bras 32:426–431

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Benzie IF, Strain J (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    Article  CAS  PubMed  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers Microbiol 6:1559

    Article  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199–1200

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306

    Article  CAS  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL (2014) Physiological responses to humic substances as plant growth promoter. Chem Biol Technol Agric 1:1–11

    Article  CAS  Google Scholar 

  • Canellas LP, Junior LRLT, Dobbss LB, Silva CA, Medici LO, Zandonadi DB, Facanha AR (2008) Humic acids cross interactions with root and organic acids. Ann Appl Biol 153:157–166

    CAS  Google Scholar 

  • Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, Piccolo A (2015) Humic and fulvic acids as biostimulants in horticulture. Sci Hortic 196:15–27

    Article  CAS  Google Scholar 

  • Caser M, Demasi S, Marisa I, Victorino M, Donno D, Faccio A, Lumini E, Bianciotto V, Scariot V (2019) Arbuscular mycorrhizal fungi modulate the crop performance and metabolic profile of saffron in soilless cultivation. Agronomy 9:232

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y (2015) Biostimulants in horticulture. Sci Hortic 196:1–2

    Article  Google Scholar 

  • Cordeiro FC, Santa-Catarina C, Silveira V, de Souza SR (2011) Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays). Biosci Biotechnol Biochem 75(1):70–74

    Article  CAS  PubMed  Google Scholar 

  • Couchoud M, Der C, Girodet S, Vernoud V, Prudent M, Leborgne-Castel N (2019) Drought stress stimulates endocytosis and modifies membrane lipid order of rhizodermal cells of Medicago truncatula in a genotype-dependent manner. BMC Plant Biol 19:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeCant JP (2008) Russian olive, Elaeagnus angustifolia, alters patterns of soil nitrogen pools along the Rio Grande River, New Mexico, USA. Wetlands 28:896–904

    Article  Google Scholar 

  • Dos Santos EL, Alves da Silva F, Barbosa da Silva FS (2017) Arbuscular mycorrhizal fungi increase the phenolic compounds concentration in the bark of the stem of Libidibia Ferrea in field conditions. Open Microbiol J 11:283–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Article  CAS  Google Scholar 

  • Ertani A, Nardi S, Francioso O, Pizzeghello D, Tinti A, Schiavon M (2019) Metabolite-targeted analysis and physiological traits of Zea mays L. in response to application of a leonardite-humate and lignosulfonate-based products for their evaluation as potential biostimulants. Agronomy 9:445

    Article  CAS  Google Scholar 

  • Espeland EK, Muscha JM, Scianna J, Kilian R, West NM, Petersen MK (2017) Secondary invasion and reinvasion after Russian-olive removal and revegetation. Invas Plant Sci Mana 10:340–349

    Article  Google Scholar 

  • Fathy MA, Gabr MA, El Shall SA (2010) Effect of humic acid treatments on ‘canino’ apricot growth, yield and fruit quality. N Y Sci J 3:109–115

    Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis, part 1. Physical and mineralogical methods, agronomy monograph no. 9, 2nd edn. American Society of Agronomy/Soil Science Society of America, Madison, pp 383–411

    Google Scholar 

  • Gigon A, Matos AR, Laffray D, Zuily-Fodil Y, Pham-Thi AT (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann Bot 94(3):345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Grúz J, Ayaz FA, Torun H, Strnad M (2011) Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem 124:271–277

    Article  CAS  Google Scholar 

  • Hayes MHB (2006) Solvent systems for the isolation of organic components from soils. Soil Sci Soc Am J 70:986–994

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts, I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Lopez-Climent MF, Arbona V, Perez-Clemente RM, Gomez Cadenas A (2009) Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. J Plant Physiol 166:1391–1404

    Article  CAS  PubMed  Google Scholar 

  • Huang DJ, Chun-Der L, Hsien-Jung C, Yaw-Huei L (2004) Antioxidant and antiproliferative activities of sweet potato (Ipomoea batatas [L.] Lam ‘Tainong 57’) constituents. Bot Bull Acad Sinica 45:179–186

    CAS  Google Scholar 

  • Ibrahim EA, Ramadan WA (2015) Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci Hortic 184:101–105

    Article  CAS  Google Scholar 

  • Jimenez A, Hernandez JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114(1):275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazemi R, Ronaghi A, Yasrebi J, Ghasemi-Fasaei R, Zarei M (2019) Effect of shrimp waste–derived biochar and arbuscular mycorrhizal fungus on yield, antioxidant enzymes, and chemical composition of corn under salinity stress. J Soil Sci Plant Nutr 19:758–770

    Article  CAS  Google Scholar 

  • Larose G, Chênevert R, Moutoglis P, Gagne S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the development stage of the symbiosis and the root colonizing arbuscular-mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Liu J, Lu B, Xun AL (2000) An improved method for the determination of hydrogen peroxide in leaves. Prog Biochem Biophys 27:548–551

    CAS  Google Scholar 

  • Loeppert RH, Suarez DL (1996) Carbonate and gypsum. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis, part 3. Chemical methods American Society of Agronomy and Soil Science Society of America, Madison, pp 437–474

    Google Scholar 

  • Mahoney SM, Smith ANB, Motyka PJ, Lundgren EJ, Winton RR, Stevens B, Johnson MJ (2019) Russian olive habitat along an arid river supports fewer bird species, functional groups and a different species composition relative to mixed vegetation habitats. J Arid Environ 167:26–33

    Article  Google Scholar 

  • Mika A, Lüthje S (2003) Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol 132:1489–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RJ, Bell DT, Koeppe DE (1971) The effects of water stress on some membrane characteristics of corn mitochondria. Plant Physiol 48(2):229–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network in plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Muscolo A, Sidari M (2009) Carboxyl and phenolic humic fractions affect Pinus nigra callus growth and metabolism. Soil Sci Soc Am J 73:1119–1129

    Article  CAS  Google Scholar 

  • Muscolo A, Felici M, Concheri G, Nardi S (1993) Effect of earthworm humic substances on esterase and peroxidase activity during growth of leaf explants of Nicotiana plumbaginifolia. Biol Fert Soils 15:127–131

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Schiavon M, Ertani A (2016) Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci Agric 73:18–23

    Article  CAS  Google Scholar 

  • Ozfidan-Konakci C, Yildiztugay E, Bahtiyar M, Kucukoduk M (2018) The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicol Environ Saf 155:66–75

    Article  CAS  PubMed  Google Scholar 

  • Paul K, Sorrentino M, Lucini L, Rouphael Y, Cardarelli M, Bonini P, Reynaud H, Canaguier R, Trtílek M, Panzarová K, Colla G (2019) Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: a case study on tomato. Front Plant Sci 10:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65(13):1925–1930

    Article  CAS  PubMed  Google Scholar 

  • Rouphael Y, Colla G (2018) Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front Plant Sci 9:1655

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Article  Google Scholar 

  • Santa-Cruz A, Martinez-Rodriguez MM, Perez-Alfocea F, Romero-Aranda R, Bolarin MC (2002) The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci 162:825–831

    Article  CAS  Google Scholar 

  • Santander C, Sanhueza M, Olave J, Borie F, Valentine A, Cornejo P (2019) Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance. J Soil Sci Plant Nutr 19:321–331

    Article  CAS  Google Scholar 

  • Santos CS, Ozgur R, Uzilday B, Turkan I, Roriz M, Rangel AOSS, Carvalho SMP, Vasconcelos MW (2019) Understanding the role of the antioxidant system and the tetrapyrrole cycle in iron deficiency chlorosis. Plants (Basel) 8(9):348

    Article  CAS  Google Scholar 

  • Sbrana C, Avio L, Giovannetti M (2014) Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 35:1535–1546

    Article  CAS  PubMed  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. Wiley, New York

    Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL et al (eds) Methods of soil analysis-part 3-chemical methods Madison. Soil Science Society of America and American Society of Agronomy, Madison, pp 1201–1229

    Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Valdrighi MM, Pera A, Agnolucci M, Frassinetti S, Lunardi D, Vallini G (1996) Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system: a comparative study. Agric Ecosyst Environ 58:133–144

    Article  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Fu Z, Ren Q, Zhu L, Lin J, Zhang J, Cheng X, Ma J, Yue J (2019) Effects of arbuscular mycorrhizal fungi on growth, photosynthesis, and nutrient uptake of Zelkova serrata (Thunb.) makino seedlings under salt stress. Forests 10:–186

  • Wu QS, Srivastava AK, Zou YN (2013) AMF-induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77–87

    Article  CAS  Google Scholar 

  • Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M (2015) The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One 10(12):e0145726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Liang Y, Han X, Chiu TY, Ghosh A, Chen H, Tang M (2016) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6:20469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildiz O, Altundağ E, Çetin B, Güner ŞT, Sarginci M, Toprak B (2017) Afforestation restoration of saline-sodic soil in the Central Anatolian Region of Turkey using gypsum and sulfur. Silva Fennica 51:1579

  • Zegaoui Z, Planchais S, Cabassa C, Djebbar R, Belbachir OA, Carol P (2017) Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. J Plant Physiol 218:26–34

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Sun XY, Tian Y, Gong XQ (2014) Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci Hortic 176:70–78

    Article  CAS  Google Scholar 

  • Zhang B, Wijesundara NM, Abbey L, Rupasinghe HPV (2017) Growing medium amendments effect on growth, secondary metabolites and anti-streptococcal activity of two species of Plectranthus. J Appl Res Med Aromat Plants 5:53–59

    Google Scholar 

  • Zhang X, Li G, Du S (2018) Simulating the potential distribution of Elaeagnus angustifolia L. based on climatic constraints in China. Ecol Eng 113:27–34

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Nuriye Peaci for her corrections and suggestions for the English grammar in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hülya Torun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torun, H., Toprak, B. Arbuscular Mycorrhizal Fungi and K-Humate Combined as Biostimulants: Changes in Antioxidant Defense System and Radical Scavenging Capacity in Elaeagnus angustifolia. J Soil Sci Plant Nutr 20, 2379–2393 (2020). https://doi.org/10.1007/s42729-020-00304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-020-00304-z

Keywords

Navigation