Skip to main content
Log in

A robust effect of the defect on the switching behavior in carbon-based molecular device

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, we investigate the effects of spin-dependent electron and defect in the carbon-based molecular device. Our proposed molecular device is designed by two carbon chains, which is bonded to a defect. The defect topology includes pentagonal and octagonal carbon rings, which is put between two zigzag-edged graphene nanoribbon (ZGNR). The spin effect and switching symbiosis are shown in this carbon-based device. By switching of the orientation of the defect in two states (S1/S2 states) relative to the two electrodes, the full spin effect is shown. Also, we report the obvious negative differential resistance (NDR) behavior in our proposed molecular device. The results suggest that the proposed composition significantly affects the ratio of current and voltage, which the maximum peak of current (S2 state) is lower than 0.0022 μA and could have a potential application in the next generation of molecular circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zeng J, Chen KQ (2013) Spin filtering, magnetic and electronic switching behaviors in manganese porphyrin-based spintronic devices. J Mater Chem C. https://doi.org/10.1039/c3tc30431k

  2. Wan H, Zhou B, Chen X, Sun CQ, Zhou G (2012) Switching, dual spin-filtering effects, and negative differential resistance in a carbon-based molecular device. J Phys Chem C. https://doi.org/10.1021/jp2092576

  3. Deng Y-X, Chen S-Z, Zeng Y, Zhou W-X, Chen K-Q (2017) Large spin rectifying and high-efficiency spin-filtering in superior molecular junction. Org Electron 50:184–190. https://doi.org/10.1016/J.ORGEL.2017.07.046

    Article  CAS  Google Scholar 

  4. Filipe A, Drouhin HJ, Lampel G, Lassailly Y, Nagle J, Peretti J, Safarov VI, Schuhl A (1998) Spin-dependent transmission of electrons through the ferromagnetic metal base of a hot-electron transistorlike system. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.80.2425

  5. Sun X-W, Zhao P (2019) Large dual spin-rectifying and high-efficiency dual spin-filtering in cyclooligomeric Mn-phthalocyanine dimer molecular junction. Chem Phys Lett 724:73–79. https://doi.org/10.1016/J.CPLETT.2019.03.056

    Article  CAS  Google Scholar 

  6. Enamullah, Kumar V, Setlur GS (2012) Crossover of coherent rabi oscillations in graphene. Phys B Condens Matter 407(23):4600–4609. https://doi.org/10.1016/J.PHYSB.2012.08.005

    Article  CAS  Google Scholar 

  7. Drath O, Boskovic C (2018) Switchable cobalt coordination polymers: spin crossover and valence tautomerism. Coord Chem Rev 375:256–266. https://doi.org/10.1016/J.CCR.2017.11.025

    Article  CAS  Google Scholar 

  8. Xiao W-H, Xie F, Zhang X-J, Chu Y-F, Liu J-P, Wang H-Y, Fan Z-Q, Long M-Q, Chen K-Q (2019) Large negative differential resistance behavior in arsenene nanoribbons induced by vacant defects. Phys Lett A 383(14):1629–1635. https://doi.org/10.1016/J.PHYSLETA.2019.02.022

    Article  CAS  Google Scholar 

  9. He J, Zheng L, Feng D, Liu M, Shao D, Lu Z, Zhang X, Wang W, Wang W, Lu F et al (2018) Interfacial effects on the microstructures and magnetoresistance of Ni80Fe20/P3HT/Fe organic spin valves. J Alloys Compd 769:991–997. https://doi.org/10.1016/J.JALLCOM.2018.08.024

    Article  CAS  Google Scholar 

  10. Iqbal MJZ, Hussain G, Siddique S, Hussain T, Iqbal MJZ (2018) Influence of DC-biasing on the performance of graphene spin valve. Solid State Commun 272:33–36. https://doi.org/10.1016/j.ssc.2018.01.010

    Article  CAS  Google Scholar 

  11. Svalov AV, Vas’kovskiy VO, Orue I, Kurlyandskaya GV (2017) Tailoring of switching field in GdCo-based spin valves by inserting co layer. J Magn Magn Mater 441:795–798. https://doi.org/10.1016/J.JMMM.2017.06.076

    Article  CAS  Google Scholar 

  12. Feng M, Gao L, Deng Z, Ji W, Guo X, Du S, Shi D, Zhang D, Zhu D, Gao H (2007) Reversible, erasable, and rewritable nanorecording on an H2 rotaxane thin film. J Am Chem Soc. https://doi.org/10.1021/ja067037p

  13. Yang J, Han X, Yuan P, Bian B, Zheng Y, Shi H, Ding Y (2018) Effect of the lateral linking groups on the switching behavior in single molecular device. Mater Chem Phys 213:140–145. https://doi.org/10.1016/J.MATCHEMPHYS.2018.04.028

    Article  CAS  Google Scholar 

  14. Kolla HS, Surwade SP, Zhang X, MacDiarmid AG, Manohar SK (2005) Absolute molecular weight of polyaniline. J Am Chem Soc. https://doi.org/10.1021/ja055327k

  15. Lefter C, Tan R, Dugay J, Tricard S, Molnár G, Salmon L, Carrey J, Nicolazzi W, Rotaru A, Bousseksou A (2016) Unidirectional electric field-induced spin-state switching in spin crossover based microelectronic devices. Chem Phys Lett 644:138–141. https://doi.org/10.1016/J.CPLETT.2015.11.036

    Article  CAS  Google Scholar 

  16. Yanagi H, Ikuta K (2005) Stochastic switching of subphthalocyanine arrays triggered by scanning tunneling microscopy. Surf Sci 581(1):9–16. https://doi.org/10.1016/J.SUSC.2005.02.024

    Article  CAS  Google Scholar 

  17. García-Iriepa C, Frutos LM (2018) Molecular switching by electron holes. Chem 4(7):1488–1489. https://doi.org/10.1016/J.CHEMPR.2018.06.010

    Article  Google Scholar 

  18. Bian B, Yang J, Han X, Shi H, Ding Y (2018) Switching behavior induced by different substituents of group in single molecular device. Eur Phys J B 91(8):184. https://doi.org/10.1140/epjb/e2018-90269-3

    Article  CAS  Google Scholar 

  19. Ruffieux P, Wang S, Yang B et al (2016) On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531:489–492. https://doi.org/10.1038/nature17151

    Article  PubMed  CAS  Google Scholar 

  20. Lahiri J, Lin Y, Bozkurt P, Oleynik II, Batzill M (2010) An extended defect in graphene as a metallic wire. Nat Nanotechnol. https://doi.org/10.1038/nnano.2010.53

  21. Zheng G, Jia Y, Gao S, Ke S-H (2017) A planar carbon allotrope with linear bipentagon-octagon and hexagon arrangement. Phys E Low-Dimens Syst Nanostruct 87:107–111. https://doi.org/10.1016/J.PHYSE.2016.09.011

    Article  CAS  Google Scholar 

  22. Ren Y, Chen KQ (2010) Effects of symmetry and stone-wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons. J Appl Phys. https://doi.org/10.1063/1.3309775

  23. Ozaki T, Nishio K, Weng H, Kino H (2010) Dual spin filter effect in a zigzag graphene nanoribbon. Phys Rev B-Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.81.075422

  24. Papaconstantopoulos DA, Mehl MJ (2003) The Slater-Koster tight-binding method: a computationally efficient and accurate approach. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/15/10/201

  25. Li XF, Chen KQ, Wang L, Long MQ, Zou BS, Shuai Z (2007) Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices. Appl Phys Lett. https://doi.org/10.1063/1.2790839

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Vahed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyramienanlou, H., Vahed, H. A robust effect of the defect on the switching behavior in carbon-based molecular device. J Mol Model 26, 223 (2020). https://doi.org/10.1007/s00894-020-04491-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04491-5

Keywords

Navigation