Skip to main content
Log in

First-Principle and Monte Carlo Calculations of Structural, Electronic and Magnetic Properties of the Double Perovskite Sr2TiMoO6

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Based on the density functional theory and the Monte Carlo Simulation (MCS), the structural, the electronic and the magnetic properties of \(\hbox {Sr}_{2}\hbox {TiMoO}_6\) double perovskite have been studied with (GGA), \((\hbox {GGA}+U)\) and \((\hbox {GGA}+U+\hbox {SOC})\) approaches. The lattice parameter, the band structure and the electronic densities of states have been analyzed. Furthermore, the results show a half-metallic behavior of the compound with \((\hbox {GGA}+U)\). By the energy calculation, \(\hbox {Sr}_{2}\hbox {TiMoO}_6\) oxide shows an antiferromagnetic ordering. The exchange coupling of \(\hbox {Sr}_{2}\hbox {TiMoO}_6\) has been also computed in order to investigate the magnetic properties by using MCS in the framework of the Ising model. Interesting phenomena have been obtained such as the first-order transitions and multiple hysteresis loops. These results make \(\hbox {Sr}_{2}\hbox {TiMoO}_6\) a promising candidate for spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Cheng, Z.Q. Yang, Phys. Status Solidi B 243, 1151 (2006)

    Article  ADS  Google Scholar 

  2. Z. Szotek, W.M. Temmerman, A. Svane, L. Petit, H. Winter, Phys. Rev. B 68, 104411 (2003)

    Article  ADS  Google Scholar 

  3. O. Erten, O.N. Meetei, A. Mukherjee, M. Randeria, N. Trivedi, P. Woodward, Phys. Rev. Lett. 107, 257201 (2011)

    Article  ADS  Google Scholar 

  4. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677 (1998)

    Article  ADS  Google Scholar 

  5. S.H. Chi, H. Yang, S.M. Feng, F.Y. Li, R.C. Yu, C.Q. Jin, J. Magn. Magn. Mater. 310, 358 (2007)

    Article  ADS  Google Scholar 

  6. J. Pilo, J.L. Rosas, E. Carvajal, M. Cruz-Irisson, O. Navarro, Phys. Procedia 75, 1035 (2015)

    Article  ADS  Google Scholar 

  7. A. Souidi, S. Bentata, W. Benstaali, B. Bouadjemi, A. Abbad, T. Lantri, Mater. Sci. Semicond. Process. 43, 196 (2016)

    Article  Google Scholar 

  8. H. Kato, T. Okuda, Y. Okimoto, Y. Tomioka, Y. Takenoya, A. Ohkubo, M. Kawasaki, Y. Tokura, Appl. Phys. Lett. 81, 328 (2002)

    Article  ADS  Google Scholar 

  9. C.M. Bonilla, D.A. Landínez Téllez, J. Arbey Rodríguez, E. Vera López, J. Roa-Rojas, Physica B 398, 208 (2007)

    Article  ADS  Google Scholar 

  10. Y. Zhang, V. Ji, K.-W. Xu, Mater. Chem. Phys. 136, 570 (2012)

    Article  Google Scholar 

  11. H.T. Jeng, G.Y. Guo, Phys. Rev. B 67, 094438 (2003)

    Article  ADS  Google Scholar 

  12. D.P. Rai, A. Shankar, M.P. Ghimire, Sandeep, R.K. Thapa, Comput. Mater. Sci. 101, 313 (2015)

    Article  Google Scholar 

  13. M. Fiebig, J. Phys. D 38, R123 (2005)

    Article  ADS  Google Scholar 

  14. J.F. Scott, Nat. Mater. 6, 256 (2007)

    Article  ADS  Google Scholar 

  15. Y.H. Chu, L.W. Martin, M.B. Holcomb et al., Nat. Mater. 7, 478 (2008)

    Article  ADS  Google Scholar 

  16. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  17. M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308, 325 (2007)

    Article  ADS  Google Scholar 

  18. B. Rameshe, M. Rajagopalan, B. Palanivel, Comput. Condens. Matter 4, 13 (2015)

    Article  Google Scholar 

  19. M.H. Aguirre, D. Logvinovich, L. Bocher, R. Robert, S.G. Ebbinghaus, A. Weidenkaff, Acta Mater. 57, 108 (2009)

    Article  Google Scholar 

  20. T. Sugahara, N. Van Nong, M. Ohtaki, Mater. Chem. Phys. 133, 630 (2012)

    Article  Google Scholar 

  21. K. Tanwar, M. Saxena, T.J. Maiti, Appl. Phys. 122, 164902 (2017)

    Article  Google Scholar 

  22. M. Saxena et al., Scr. Mater. 130, 205 (2017)

    Article  Google Scholar 

  23. C.E. Alarcon-Suesca et al., J. Alloys Compd. 771, 1080 (2019)

    Article  Google Scholar 

  24. B. Niu, F. Jin, X. Yang et al., Int. J. Hydrogen Energy 43, 3280 (2018)

    Article  Google Scholar 

  25. Y.J. Hui, F. Qiang, Mater. Sci. Eng. 382, 022025 (2018)

    Google Scholar 

  26. S. Amraoui, A. Feraoun, M. Kerouad, J. Phys. Chem. Solids 131, 189 (2019)

    Article  ADS  Google Scholar 

  27. S. Amraoui, A. Feraoun, M. Kerouad, Physica A 550, 124198 (2020)

    Article  Google Scholar 

  28. M. Peterson, F. Wanger, L. Hufnagel, M. Scheffler et al., Comput. Phys. Commun. 126, 294 (2000)

    Article  ADS  Google Scholar 

  29. A. Revelli, C.C. Loo, D. Kiese, Phys. Rev. B 100, 085139 (2019)

    Article  ADS  Google Scholar 

  30. Q. Meng, T. Wang et al., J. Phys. Chem. Chem. Phys 15, 9549 (2013)

    Article  Google Scholar 

  31. K. Wang, W. Jiang, J.-N. Chen, J.-Q. Huang, Superlattices Microstruct. (2016). https://doi.org/10.1016/j.spmi.2016.06.011

    Article  Google Scholar 

  32. K. Wang, N. Si, Y.-L. Zhang, F. Zhang, A.-B. Guo, W. Jiang, Vacuum 165, 105 (2019)

    Article  ADS  Google Scholar 

  33. G.V. Bazuev, A.V. Korolev, J. Phys. Solid State 50, 43 (2008)

    Article  ADS  Google Scholar 

  34. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amraoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amraoui, S., Feraoun, A. & Kerouad, M. First-Principle and Monte Carlo Calculations of Structural, Electronic and Magnetic Properties of the Double Perovskite Sr2TiMoO6. J Low Temp Phys 201, 437–450 (2020). https://doi.org/10.1007/s10909-020-02510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02510-6

Keywords

Navigation