Skip to main content
Log in

MurE inhibitors as antibacterial agents: a review

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Peptidoglycan, an essential component of the bacterial cell wall plays a critical role in protecting bacteria against osmotic lysis. The ATP-dependent MurC-F ligases are crucial for the early stages of peptidoglycan biosynthesis. MurE ligase is third in the series and catalyzes the addition of l-Lysine (l-Lys) in Gram-positive bacteria or meso-diaminopimelic acid (meso-A2pm) in most Gram-negative bacteria to form UDP-N-acetylmuramoyl-l-Ala-d-Glu-l-Lys/A2pm. The high substrate specific for l-Lys or meso-A2pm makes this enzyme an attractive target for the development of antibacterial agents. Several MurE inhibitors have been reported including phosphinates, peptidosulfonamides, napthylfuran-2-ones, benzene-1,3-dicarboxylic acids, phosphorylatedhydroxyethylamines, natural compounds, 5-benzylidenethiazolidin-4-ones, N-alkyl-2-alkynyl-4(1H)-quinolones, rhodanine substituted d-glutamic acids, 2,5-dimethyl pyrroles, 2,5-disubstitued furans, tetrahydroisoquinolines etc. In the present review we present an update status and structural information of MurE enzyme inhibitors which may be utilized for the design of potent inhibitors against this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

d-Glu:

d-Glutamic acid

IC50 :

Half maximal inhibitory concentration

l-Ala:

l-Alanine

meso-A2pm:

meso-Diaminopimelic acid

MIC:

Minimum inhibitory concentration

MurE:

UDP-N-acetylmuramoyl-l-Ala:d-Glu ligase

UDP:

Uridine-5′-diphosphate

UDP-MurNAc:

UDP-N-acetylmuramic acid

References

  1. Jacobs, M.R.: Worldwide trends in antimicrobial resistance among common respiratory tract pathogens in children. Pediatr. Infect. Dis. J. 22, 109–119 (2003)

    Google Scholar 

  2. Silver, L.L.: Novel inhibitors of bacterial cell wall synthesis. Curr. Opin. Microbiol. 6, 431–438 (2003)

    CAS  PubMed  Google Scholar 

  3. Gordon, E., Flouret, B.: Crystal structure of UDP-N-acetylmuramoyl-l-alanyl-d-glutamate: meso-diaminopimelate ligase from Escherichia coli. J. Biol. Chem. 276, 10999–11006 (2001)

    CAS  PubMed  Google Scholar 

  4. Boniface, A., Bouhss, A.: The MurE synthetase from Thermotoga maritima is endowed with an unusual d-lysine adding activity. J. Biol. Chem. 281, 15680–15686 (2006)

    CAS  PubMed  Google Scholar 

  5. Triolo, T.A., Chabin, R.M., Pompliano, D.L.: Cloning, expression and characterization of the Streptococcus pyogenes murE gene encoding a UDP-MurNAc-l-alanyl-d-glutamate: l-lysine ligase. Enzym. Microb. Technol. 35, 300–308 (2004)

    CAS  Google Scholar 

  6. Mengin-Lecreulx, D., Falla, T., Blanot, D., van Heijenoort, J., Adams, D.J., Chopra, I.: Expression of the Staphylococcus aureus UDP-N-acetylmuramoyl-l-alanyld-glutamate:l-lysine ligase in Escherichia coli and effects on peptidoglycan biosynthesis and cell growth. J. Bacteriol. 181, 5909–5914 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Glauner, B., Holtje, J.V., Schwarz, U.: The composition of the murein of Escherichia coli. J. Boil. Chem. 263, 10088–10095 (1988)

    CAS  Google Scholar 

  8. Ruane, K.M., Lloyd, A.J.: Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex. J. Biol. Chem. 288, 33439–33448 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. El-Zoeiby, A., Sanschagrin, F., Levesque, R.C.: Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol. 47, 1–2 (2003)

    CAS  PubMed  Google Scholar 

  10. Smith, C.A.: Structure, function and dynamics in the mur family of bacterial cell wall ligases. J. Mol. Biol. 362, 640–655 (2006)

    CAS  PubMed  Google Scholar 

  11. Sheng, Y., Sun, X., Shen, Y., Bognar, A.L., Baker, E.N., Smith, C.A.: Structural and functional similarities in the ADP-forming amide bond ligase superfamily: implications for a substrate-induced conformational change in folylpolyglutamate synthetase. J. Mol. Biol. 302, 425–438 (2000)

    Google Scholar 

  12. Dementin, S., Bouhss, A., Auger, G., Parquet, C., Mengin-Lecreulx, D., Dideberg, O., van-Heijenoort, J., Blanot, D.: Evidence of a functional requirement for a carbamoylated lysine residue in MurD, MurE and MurF synthetases as established by chemical rescue experiment. Eur. J. Biochem. 268, 5800–5807 (2001)

    CAS  PubMed  Google Scholar 

  13. Bouhss, A., Dementin, S., van Heijenoort, J., Parquet, C., Blanot, D.: Crystal structure of UDP-N-acetylmuramoyl-l-alanyl-d-glutamate: meso-diaminopimelate ligase from Escherichia coli. FEBS Lett. 453, 15–19 (1999)

    CAS  PubMed  Google Scholar 

  14. Barreteau, H., Kovac, A., Boniface, A., Sova, M., Gobec, S., Blanot, D.: Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 168–207 (2008)

    CAS  PubMed  Google Scholar 

  15. Van Falk, P.J., Ervin, K.M., Volk, K.S., Ho, H.T.: Biochemical evidence for the formation of a covalent acyl-phosphate linkage between UDP-N-acetylmuramate and ATP in the Escherichia coli UDP-N-acetylmuramate:l-alanine ligase-catalyzed reaction. Biochemistry 35, 1417–1422 (1996)

    CAS  PubMed  Google Scholar 

  16. Perdih, A., Kotnik, M., Hodoscek, M., Solmajer, T.: Targeted molecular dynamics simulation studies of binding and conformational changes in E. coli MurD. Proteins 68, 243–254 (2007)

    CAS  PubMed  Google Scholar 

  17. Bouhss, A., Dementin, S., van-Heijenoort, J., Parquet, C., Blanot, D.: MurC and MurD synthetases of peptidoglycan biosynthesis: borohydride trapping of acyl-phosphate intermediates. Methods Enzymol. 354, 189–196 (2002)

    CAS  PubMed  Google Scholar 

  18. Williams, R.M., Fegley, G.J., Gallegos, R., Schaefer, F., Pruess, D.L.: Asymmetric syntheses of (2S,3S,6S), (2S,3S,6R)-, and (2R,3R,6S)-2,3-methano-2,6-diaminopimelic. Acids studies directed to the design of novel substrate-based inhibitors of l, l-diaminopimelate epimerase. Tetrahedron 52, 1149–1164 (1996)

    CAS  Google Scholar 

  19. Auger, G., van Heijenoort, J., Vederas, J.C., Blanot, D.: Effect of analogues of diaminopimelic acid on the meso-diaminopimelate-adding enzyme from Escherichia coli. FEBS Lett. 391, 171–174 (1996)

    CAS  PubMed  Google Scholar 

  20. Longenecker, K.L., Stamper, G.F., Hajduk, P.J., Fry, E.H., Jakob, C.G., Harlan, J.E., Edalji, R., Bartley, D.M., Walter, K.A., Solomon, L.R., Holzman, T.F.: Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure. Protein Sci. 14, 3039–3047 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanner, M.E., Vaganay, S., van-Heijenoort, J., Blanot, D.: Phosphinate inhibitors of the d-glutamic acid-adding enzyme of peptidoglycan biosynthesis. J. Org. 61, 1756–1760 (1996)

    CAS  Google Scholar 

  22. Strancar, K., Blanot, D., Gobec, S.: Design, synthesis and structure–activity relationships of new phosphinate inhibitors of MurD. Bioorg. Med. Chem. Lett. 16, 343–348 (2006)

    CAS  PubMed  Google Scholar 

  23. Hrast, M., Sosič, I., Šink, R., Gobec, S.: Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg. Med. 55, 2–15 (2014)

    CAS  Google Scholar 

  24. Zeng, B., Wong, K.K., Pompliano, D.L., Reddy, S., Tanner, M.E.: A phosphinate inhibitor of the meso-diaminopimelic acid-adding enzyme (MurE) of peptidoglycan biosynthesis. J. Org. Chem. 63, 10081–10086 (1998)

    CAS  Google Scholar 

  25. Gegnas, L.D., Waddell, S.T., Chabin, R.M., Reddy, S., Wong, K.K.: Inhibitors of the bacterial cell wall biosynthesis enzyme Mur D. Bioorg. Med. Chem. Lett. 8, 1643–1648 (1998)

    CAS  PubMed  Google Scholar 

  26. Humljan, J., Kotnik, M., Boniface, A., Šolmajer, T., Urleb, U., Blanot, D., Gobec, S.: A new approach towards peptidosulfonamides: synthesis of potential inhibitors of bacterial peptidoglycan biosynthesis enzymes MurD and MurE. Tetrahedron 62, 10980–10988 (2006)

    CAS  Google Scholar 

  27. Mansour, T.S., Caufield, C.E., Rasmussen, B., Chopra, R., Krishnamurthy, G., Morris, K.M., Svenson, K., Bard, J., Smeltzer, C., Naughton, S., Antane, S.: Naphthyltetronic acids as multi-target inhibitors of bacterial peptidoglycan biosynthesis. Chem. Med. Chem. 2, 1414–1417 (2007)

    CAS  PubMed  Google Scholar 

  28. Perdih, A., Kovac, A., Wolber, G., Blanot, D., Gobec, S., Solmajer, T.: Discovery of novel benzene 1, 3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg. Med. Chem. Lett. 19, 2668–2673 (2009)

    CAS  PubMed  Google Scholar 

  29. Sova, M., Kovac, A., Turk, S., Hrast, M., Blanot, D., Gobec, S.: Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorg. Chem. 37, 217–222 (2009)

    CAS  PubMed  Google Scholar 

  30. Guzman, J.D., Gupta, A., Evangelopoulos, D., Basavannacharya, C., Pabon, L.C., Plazas, E.A., Munoz, D.R., Delgado, W.A., Cuca, L.E., Ribon, W., Gibbons, S.: Anti-tubercular screening of natural products from Colombian plants: 3-methoxynordomesticine, an inhibitor of MurE ligase of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 65, 2101–2107 (2010)

    CAS  PubMed  Google Scholar 

  31. Tomasic, T., Zidar, N., Kovac, A., Turk, S., Simcic, M., Blanot, D., Muller-Premru, M., Filipic, M., Grdadolnik, S.G., Zega, A., Anderluh, M.: 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. Chem. Med. Chem. 5, 286–295 (2010)

    CAS  PubMed  Google Scholar 

  32. Guzman, J.D., Wube, A., Evangelopoulos, D., Gupta, A., Hüfner, A., Basavannacharya, C., Rahman, M.M., Thomaschitz, C., Bauer, R., McHugh, T.D., Nobeli, I.: Interaction of N-methyl-2-alkenyl-4-quinolones with ATP-dependent MurE ligase of Mycobacterium tuberculosis: antibacterial activity, molecular docking and inhibition kinetics. J. Antimicrob. Chemother. 66, 1766–1772 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wube, A., Guzman, J.D., Hufner, A., Hochfellner, C., Blunder, M., Bauer, R., Gibbons, S., Bhakta, S., Bucar, F.: Synthesis and antibacterial evaluation of a new series of N-Alkyl-2-alkynyl/(E)-alkenyl-4-(1H)-quinolones. Molecules 17, 8217–8240 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Osman, K., Evangelopoulos, D., Basavannacharya, C., Gupta, A., McHugh, T.D., Bhakta, S., Gibbons, S.: An antibacterial from Hypericumacmosepalum inhibits ATP-dependent MurE ligase from Mycobacterium tuberculosis. Int. J. Antimicrob. 39, 124–129 (2012)

    CAS  Google Scholar 

  35. Tomasic, T., Sink, R., Zidar, N., Fic, A., Contreras-Martel, C., Dessen, A., Patin, D., Blanot, D., Müller-Premru, M., Gobec, S., Zega, A.: Dual inhibitor of MurD and MurE ligases from Escherichia coli and Staphylococcus aureus. ACS Med. Chem. Lett. 3, 626–630 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Perdih, A., Hrast, M., Barreteau, H., Gobec, S., Wolber, G., Solmajer, T.: Benzene-1, 3-dicarboxylic acid 2, 5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC–MurF). Bioorg. Med. Chem. 22, 4124–4134 (2014)

    CAS  PubMed  Google Scholar 

  37. Perdih, A., Hrast, M., Pureber, K., Barreteau, H., Grdadolnik, S.G., Kocjan, D., Gobec, S., Solmajer, T., Wolber, G.: Furan-based benzene mono-and dicarboxylic acid derivatives as multiple inhibitors of the bacterial Mur ligases (MurC–MurF): experimental and computational characterization. J. Comput. Aided Mol. Des. 29, 541–560 (2015)

    CAS  PubMed  Google Scholar 

  38. Guzman, J.D., Pesnot, T., Barrera, D.A., Davies, H.M., McMahon, E., Evangelopoulos, D., Mortazavi, P.N., Munshi, T., Maitra, A., Lamming, E.D., Angell, R.: Tetrahydroisoquinolines affect the whole-cell phenotype of Mycobacterium tuberculosis by inhibiting the ATP-dependent MurE ligase. J. Antimicrob. 70, 1691–1703 (2015)

    CAS  Google Scholar 

  39. Hrast, M., Rožman, K., Ogris, I., Skedelj, V., Patin, D., Sova, M., Barreteau, H., Gobec, S., Grdadolnik, S.G., Zega, A.: Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. J. Enzym. Inhib. Med. Chem. 34, 1010–1017 (2019)

    CAS  Google Scholar 

  40. Meek, T.D., Johnson, K.A., Villafranca, J.J.: Escherichia coli glutamine synthetase. Determination of rate-limiting steps by rapid-quench and isotope partitioning experiments. Biochemistry 21, 2158–2167 (1982)

    CAS  PubMed  Google Scholar 

  41. Meek, T.D., Villafranca, J.J.: Kinetic mechanism of Escherichia coli glutamine synthetase. Biochemistry 19, 5513–5519 (1980)

    CAS  PubMed  Google Scholar 

  42. Midelfort, C.F., Rose, I.A.: A stereochemical method for detection of ATP terminal phosphate transfer in enzymatic reactions. Glutamine synthetase. J. Biol. Chem. 251, 5581–5587 (1976)

    Google Scholar 

  43. Shi, Y., Walsh, C.T.: Active-site mapping of Escherichia colid-Ala-d-Ala ligase by structure-based mutagenesis. Biochemistry 34, 2768–2776 (1995)

    CAS  PubMed  Google Scholar 

  44. Fan, C., Moews, P.C., Walsh, C.T.: Vancomycin resistance: structure of d-alanine: d-alanine ligase at 2.3 Å resolution. Science 266, 439–443 (1994)

    CAS  PubMed  Google Scholar 

  45. Wright, G.D., Walsh, C.T.: d-Alanyl-d-alanine ligases and the molecular mechanism of vancomycin resistance. Acc. Chem. Res. 25, 468–473 (1992)

    CAS  Google Scholar 

  46. Mullins, L.S., Zawadzke, L.E., Walsh, C.T., Raushel, F.M.: Kinetic evidence for the formation of d-alanyl phosphate in the mechanism of d-alanyl-d-alanine ligase. J. Biol. Chem. 265, 8993–8998 (1990)

    CAS  PubMed  Google Scholar 

  47. Falk, P.J., Ervin, K.M., Volk, K.S., Ho, H.T.: Biochemical evidence for the formation of a covalent acyl-phosphate linkage between UDP-N-acetylmuramate and ATP in the Escherichia coli UDP-N-acetylmuramate: l-alanine ligase-catalyzed reaction. Biochemistry 35, 1417–1422 (1996)

    CAS  PubMed  Google Scholar 

  48. Bouhss, A., Mengin-Lecreulx, D., Blanot, D., van-Heijenoort, J., Parquet, C.: Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc: l-alanine ligase from Escherichia coli. Biochemistry 36, 11556–11563 (1997)

    CAS  PubMed  Google Scholar 

  49. Vaganay, S., Tanner, M.E., van-Heijenoort, J.E., Blanot, D.: Study of the reaction mechanism of the d-glutamic acid-adding enzyme from Escherichia coli. Microb. Drug Resist. 2, 51–54 (1996)

    CAS  PubMed  Google Scholar 

  50. Eveland, S.S., Pompliano, D.L., Anderson, M.S.: Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-γ-glutamate ligases: identification of a ligase superfamily. Biochemistry 36, 6223–6229 (1997)

    CAS  PubMed  Google Scholar 

  51. Walsh, C., Bradley, M., Nadeau, K.: Molecular studies on trypanothione reductase, a target for antiparasitic drugs. Trends Biochem. 16, 305–309 (1991)

    CAS  Google Scholar 

  52. Katoh, M., Hiratake, J., Kato, H., Oda, J.I.: Mechanism-based inactivation of E. coli γ-glutamyl cysteine synthetase by phosphinic acid-and sulfoximine-based transition-state analogues. Bioorg. Med. Chem. Lett. 6, 1437–1442 (1996)

    CAS  Google Scholar 

  53. Hiratake, J., Kato, H., Oda, J.I.: Mechanism-based inactivation of glutathione synthetase by phosphinic acid transition-state analog. J. Am. Chem. Soc. 116, 12059–12060 (1994)

    CAS  Google Scholar 

  54. Kato, H., Tanaka, T., Yamaguchi, H., Hara, T., Nishioka, T., Katsube, Y., Oda, J.I.: Flexible loop that is novel catalytic machinery in a ligase. Atomic structure and function of the loopless glutathione synthetase. Biochemistry 33, 4995–4999 (1994)

    CAS  PubMed  Google Scholar 

  55. Payne, D.J., Gwynn, M.N., Holmes, D.J., Pompliano, D.L.: Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007)

    CAS  PubMed  Google Scholar 

  56. Lewis, K.: Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387 (2013)

    CAS  PubMed  Google Scholar 

  57. Silver, L.L.: Does the cell wall of bacteria remain a viable source of targets for novel antibiotics? Biochem. Pharmacol. 71, 996–1005 (2006)

    CAS  PubMed  Google Scholar 

  58. Nikaido, H.: Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Baum, E.Z., Crespo-Carbone, S.M., Klinger, A., Foleno, B.D., Turchi, I., Macielag, M., Bush, K.: A MurF inhibitor that disrupts cell wall biosynthesis in Escherichia coli. Antimicrob. Agents Chemother. 51, 4420–4426 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Baum, E.Z., Crespo-Carbone, S.M., Foleno, B.D., Simon, L.D., Guillemont, J., Macielag, M., Bush, K.: MurF inhibitors with antibacterial activity: effect on muropeptide levels. Antimicrob. Agents Chemother. 53, 3240–3247 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kouidmi, I., Levesque, R.C., Paradis-Bleau, C.: The biology of Mur ligases as an antibacterial target. Mol. Microbiol. 94, 242–253 (2014)

    CAS  PubMed  Google Scholar 

Download references

Funding

We would like to thank the Science and Engineering Research Board (SERB), Government of India for the financial support (No. EMR/2016/002981).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Afzal Azam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, N., Azam, M.A. MurE inhibitors as antibacterial agents: a review. J Incl Phenom Macrocycl Chem 98, 127–136 (2020). https://doi.org/10.1007/s10847-020-01018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01018-6

Keywords

Navigation