Skip to main content

Advertisement

Log in

Effects of non-isothermal flow on groundwater recharge in a semi-arid region

Effets de l’écoulement non-isotherme sur la recharge des eaux souterraines en région semi-aride

Efectos del flujo no isotérmico en la recarga de las aguas subterráneas en una región semiárida

半干旱地区非等温水流对地下水补给的影响

Efeitos do fluxo não-isotérmico na recarga de águas subterrâneas em uma região semiárida

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater recharge is critical to water circulation in arid and semi-arid regions. The accurate determination of groundwater recharge is required for assessing water resources and effectively managing groundwater, especially in water-limited areas. Based on field experiments and numerical models in a semi-arid region, this study assessed the effect of non-isothermal flow on groundwater recharge. A lysimeter was used in the Mu Us Desert, northwestern China, to monitor groundwater recharge from 1 June to 30 September 2018. The numerical models (isothermal and non-isothermal models) were calibrated with the measured soil moisture and soil temperature. Groundwater recharge was found to take up nearly 29% of rainfall. The non-isothermal model was capable of accurately assessing groundwater recharge based on the accurate calculation of evaporation. The isothermal model, however, underestimated the groundwater recharge by 13.2% and overestimated the evaporation by 16.2%. The isothermal model overestimated evaporation during the drying process. In contrast, cumulative net recharge was underestimated after heavy rainfall events. It was therefore suggested that the non-isothermal flux should be considered in semi-arid regions, especially when assessing groundwater recharge.

Résumé

La recharge des eaux souterraines est critique vis-à-vis des écoulements des eaux dans les régions arides et semi-arides. La détermination précise de la recharge est nécessaire pour évaluer les ressources en eau et contrôler efficacement les eaux souterraines, particulièrement dans des secteurs limités en eau. Basée sur des expériences de terrain et des modèles numériques dans une région semi-aride, cette étude a évalué l’effet de l’écoulement non-isotherme sur la recharge d’eaux souterraines. Un lysimètre a été employé dans le désert du Mu Us, en Chine du nord-ouest, pour surveiller la recharge du 1 juin au 30 septembre 2018. Les modèles numériques (par exemple, modèles isothermes et non-isothermes) ont été calibrés avec des mesures de l’humidité de sol et de la température du sol. La recharge d’eaux souterraines s’est avérée représenter presque 29% de précipitations. Le modèle non-isotherme était capable d’évaluer exactement la recharge d’eaux souterraines à partir du calcul précis de l’évaporation. Le modèle isotherme, cependant, a sous-estimé la recharge de 13.2% et a surestimé l’évaporation de 16.2%. Le modèle isotherme a surestimé l’évaporation durant la phase de déshydratation. Inversement, la recharge nette cumulée a été sous-estimée à la suite d’événements de précipitations intenses. Les auteurs suggèrent donc que le flux non-isotherme devrait être considéré dans les régions semi-arides, particulièrement pour évaluer la recharge d’eaux souterraines.

Resumen

La recarga de las aguas subterráneas es fundamental para la circulación del agua en las regiones áridas y semiáridas. La determinación precisa de la recarga es necesaria para evaluar los recursos hídricos y gestionar eficazmente las aguas subterráneas, especialmente en las zonas de agua limitada. Sobre la base de experimentos de campo y modelos numéricos en una región semiárida, en este estudio se evaluó el efecto del flujo no isotérmico en la recarga. Se utilizó un lisímetro en el desierto de Mu Us, en el noroeste de China, para monitorear la recarga desde el 1° de junio hasta el 30 de septiembre de 2018. Los modelos numéricos (por ejemplo, los modelos isotérmicos y no isotérmicos) se calibraron con las medidas de humedad y de la temperatura del suelo. Se comprobó que la recarga representaba casi el 29% de las precipitaciones. El modelo no isotérmico era capaz de evaluar con precisión la recarga basándose en el cálculo correcto de la evaporación. Sin embargo, el modelo isotérmico subestimó la recarga en un 13.2% y sobreestimó la evaporación en un 16.2%. El modelo isotérmico sobreestimó la evaporación durante el proceso de sequía. En cambio, la recarga neta acumulada se subestimó después de los episodios de fuertes lluvias. Por consiguiente, se sugirió que se considerara el flujo no isotérmico en las regiones semiáridas, especialmente al evaluar la recarga de las aguas subterráneas.

摘要

地下水补给对于干旱和半干旱地区的水循环至关重要。需要准确估计地下水补给量, 以评估水资源并有效管理地下水, 特别是在缺水地区。基于半干旱地区的野外实验和数值模型, 本研究评估了非等温水流模型对地下水补给的影响。 2018年6月1日至9月30日, 在中国西北部的毛乌素沙漠中使用了蒸渗仪来监测地下水的补给。用测得的土壤含水量和土壤温度对数值模型(等温和非等温模型)进行了校准)。地下水补给量占降雨总量的29%。非等温模型能够基于准确的蒸发量来准确估算地下水补给量。然而, 等温模型将地下水补给量低估了13.2%, 将蒸发量高估了16.2%。等温模型高估了干燥过程中的蒸发。相反, 暴雨过后, 累计净补给被低估了。因此, 建议在半干旱地区在估算地下水补给量时应考虑非等温通量。

Resumo

A recarga de água subterrânea é fundamental para a ciclo hidrológico em regiões áridas e semiáridas. Determinar com acurácia a recarga das águas subterrâneas é necessário para avaliar os recursos hídricos e gerenciar efetivamente as águas subterrâneas, especialmente em áreas com pouca água. A partir de experimentos de campo e modelos numéricos em uma região semiárida, este estudo avaliou o efeito do fluxo não-isotérmico na recarga de águas subterrâneas. Um lisímetro foi usado no deserto de Mu Us, noroeste da China, para monitorar a recarga das águas subterrâneas entre 1 de junho e 30 de setembro de 2018. Os modelos numéricos (por exemplo, modelos isotérmicos e não-isotérmicos) foram calibrados com medições de umidade do solo e temperatura do solo. A recarga de água subterrânea correspondeu a aproximadamente 29% da precipitação. O modelo não-isotérmico foi capaz de avaliar com precisão a recarga de águas subterrâneas com base no cálculo preciso da evaporação. O modelo isotérmico, no entanto, subestimou a recarga das águas subterrâneas em 13.2% e superestimou a evaporação em 16.2%. O modelo isotérmico superestimou a evaporação durante o processo de secagem. Em contrapartida, a saldo de recarga acumulada foi subestimada após eventos de fortes chuvas. Portanto, sugeriu-se que o fluxo não isotérmico seja utilizado nas regiões semiáridas, principalmente na avaliação da recarga de águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Batalha MS, Barbosa MC, Faybishenko B, Van Genuchten MT (2018) Effect of temporal averaging of meteorological data on predictions of groundwater recharge. J Hydrol Hydromech 66(2):143–152

    Article  Google Scholar 

  • Bhaskar AS, Hogan DM, Nimmo JR, Perkins KS (2018) Groundwater recharge amidst focused stormwater infiltration. Hydrol Process 32(13):2058–2068

    Article  Google Scholar 

  • Bergström L (1990) Use of lysimeters to estimate leaching of pesticides in agricultural soils. Environ Pollut 67(4):325–347

    Article  Google Scholar 

  • Camacho Suarez VV, Saraiva Okello AML, Wenninger JW, Uhlenbrook S (2015) Understanding runoff processes in a semi-arid environment through isotope and hydrochemical hydrograph separations. Hydrol Earth Syst Sci 19(10):4183–4199

    Article  Google Scholar 

  • Chen X, Huang Y, Ling M, Hu Q, Liu B (2012) Numerical modeling groundwater recharge and its implication in water cycles of two interdunal valleys in the Sand Hills of Nebraska. Phys Chem Earth Parts A/B/C 53:10–18

    Article  Google Scholar 

  • Chen L, Wang W, Zhang Z, Wang Z, Wang Q, Zhao M, Gong C (2018) Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China. Hydrogeol J 26(5):1693–1704

    Article  Google Scholar 

  • Chung S-O, Horton R (1987) Soil heat and water flow with a partial surface mulch. Water Resour Res 23(12):2175–2186

  • Cuthbert MO, Acworth RI, Andersen MS, Larsen JR, McCallum AM, Rau GC, Tellam JH (2016) Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations. Water Resour Res 52(2):827–840

    Article  Google Scholar 

  • de Marsily G (1986) Quantitative hydrogeology. Academic Press, London

    Google Scholar 

  • Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB (2016) The global volume and distribution of modern groundwater. Nat Geosci 9(2):161–167

    Article  Google Scholar 

  • Gosselin JS, Rivard C, Martel R, Lefebvre R (2016) Application limits of the interpretation of near-surface temperature time series to assess groundwater recharge. J Hydrol 538:96–108

    Article  Google Scholar 

  • Han J, Zhou Z, Fu Z, Wang J (2014) Evaluating the impact of nonisothermal flow on vadose zone processes in presence of a water table. Soil Sci 179(2):57–67

    Article  Google Scholar 

  • Hartmann A, Gleeson T, Wada Y, Wagener T (2017) Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proc Natl Acad Sci 114(11):2842–2847

    Article  Google Scholar 

  • Hamed Y (2013) The hydrogeochemical characterization of groundwater in Gafsa-Sidi Boubaker region (southwestern Tunisia). Arab J Geosci 6(3):697–710

    Article  Google Scholar 

  • Hernández-López MF, Braud I, Gironás J, Suárez F, Muñoz JF (2016) Modelling evaporation processes in soils from the Huasco salt flat basin, Chile. Hydrol Process 30(25):4704–4719

  • Huang J, Hou R, Yang H (2016) Diurnal pattern of liquid water and water vapor movement affected by rainfall in a desert soil with a high water table. Environ Earth Sci 75(1):73

    Article  Google Scholar 

  • Huang T, Pang Z, Liu J, Ma J, Gates J (2017) Groundwater recharge mechanism in an integrated tableland of the loess plateau, northern China: insights from environmental tracers. Hydrogeol J 25(7):2049–2065

    Article  Google Scholar 

  • Hou L, Wang XS, Hu BX, Shang J, Wan L (2016) Experimental and numerical investigations of soil water balance at the hinterland of the Badain Jaran Desert for groundwater recharge estimation. J Hydrol 540:386–396

    Article  Google Scholar 

  • Jin G, Shimizu Y, Onodera S, Saito M, Matsumori K (2015) Evaluation of drought impact on groundwater recharge rate using SWAT and Hydrus models on an agricultural island in western Japan. Proc Int Assoc Hydrol Sci 371:143

    Google Scholar 

  • Li Z, Chen X, Liu W, Si B (2017) Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers. Sci Total Environ 586:827–835

    Article  Google Scholar 

  • Lu X, Jin M, van Genuchten MT, Wang B (2011) Groundwater recharge at five representative sites in the Hebei plain, China. Groundwater 49(2):286–294

    Article  Google Scholar 

  • Meixner T, Manning AH, Stonestrom DA, Allen DM, Ajami H, Blasch KW, Brookfield AE, Castro CL, Clark JF, Gochis DJ, Flint AL, Neff KL, Niraula R, Rodell M, Scanlon BR, Walvoord MA (2016) Implications of projected climate change for groundwater recharge in the western United States. J Hydrol 534:124–138

    Article  Google Scholar 

  • Meshkat M, Warner RC, Walton LR (1999) Lysimeter design, construction, and instrumentation for assessing evaporation from a large undisturbed soil monolith. Appl Eng Agric 15(4):303

    Article  Google Scholar 

  • Meissner R, Rupp H, Seeger J, Ollesch G, Gee GW (2010) A comparison of water flux measurements: passive wick-samplers versus drainage lysimeters. Eur J Soil Sci 61(4):609–621

    Article  Google Scholar 

  • Moeck C, Radny D, Auckenthaler A, Berg M, Hollender J, Schirmer M (2017) Estimating the spatial distribution of artificial groundwater recharge using multiple tracers. Isot Environ Health Stud 53(5):484–499

    Article  Google Scholar 

  • Nimmo JR, Horowitz C, Mitchell L (2015) Discrete-storm water-table fluctuation method to estimate episodic recharge. Groundwater 53(2):282–292

    Article  Google Scholar 

  • Purandara BK, Venkatesh B, Jose MK, Chandramohan T (2018) Change of land use/land cover on groundwater recharge in Malaprabha catchment, Belagavi, Karnataka, India. In: Groundwater. Springer, Singapore, pp 109–120

    Chapter  Google Scholar 

  • Ren R, Ma J, Cheng Q, Zheng L, Guo X, Sun X (2017a) Modeling coupled water and heat transport in the root zone of winter wheat under non-isothermal conditions. Water 9(4):290

    Article  Google Scholar 

  • Ren R, Ma J, Cheng Q, Zheng L, Guo X, Sun X (2017b) An investigation into the effects of temperature gradient on the soil water–salt transfer with evaporation. Water 9(7):456

    Article  Google Scholar 

  • Saito H, Šimůnek J, Mohanty BP (2006) Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone J 5(2):784–800

  • Sakram G, Adimalla N (2018) Hydrogeochemical characterization and assessment of water suitability for drinking and irrigation in crystalline rocks of Mothkur region, Telangana state, South India. Appl Water Sci 8(5):143

    Article  Google Scholar 

  • Simunek JJ, Šejna M, Saito H, Sakai M, Van Genuchten M (2013) The hydrus-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 4.17. HYDRUS software series 3, Department of Environmental Sciences, University of California Riverside, Riverside, California

  • Szymkiewicz A, Tisler W, Burzyński K (2015) Examples of numerical simulations of two-dimensional unsaturated flow with VS2DI code using different interblock conductivity averaging schemes. Geologos 21(3):161–167

    Article  Google Scholar 

  • Tonkul S, Baba A, Şimşek C, Durukan S, Demirkesen AC, Tayfur G (2019) Groundwater recharge estimation using HYDRUS 1D model in Alaşehir sub-basin of Gediz Basin in Turkey. Environ Monit Assess 191(10):610

    Article  Google Scholar 

  • Turkeltaub T, Kurtzman D, Bel G, Dahan O (2015) Examination of groundwater recharge with a calibrated/validated flow model of the deep vadose zone. J Hydrol 522:618–627

    Article  Google Scholar 

  • van Genuchten MTh (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

  • Varis O (2014) Resources: curb vast water use in Central Asia. Nature News 514(7520):27

    Article  Google Scholar 

  • Wang W, Zhao G, Li J, Hou L, Li Y, Yang F (2011) Experimental and numerical study of coupled flow and heat transport. In: Proceedings of the Institution of Civil Engineers-Water Management, vol 164, no. 10. Thomas, London, pp 533–547

  • Xu Y, Beekman HE (2019) Groundwater recharge estimation in arid and semi-arid southern Africa. Hydrogeol J 27(3):929–943

    Article  Google Scholar 

  • Yeh PJ-F, Eltahir EAB (2005) Representation of water table dynamics in a land surface scheme. Part I: model development. J Clim 18(12):1861–1880

  • Zhang Z, Wang W, Wang Z, Chen L, Gong C (2018) Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos plateau, China. Hydrogeol J 26(5):1683–1691

    Article  Google Scholar 

  • Zhao K, Jiang X, Wang X, Wan L (2020) Restriction of groundwater recharge and evapotranspiration due to a fluctuating water table: a study in the Ordos Plateau, China. Hydrogeol J. https://doi.org/10.1007/s10040-020-02208-9

Download references

Funding

This study was financed by the National Natural Science Foundation of China (Nos. 41902249, U1603243, 41230314), the Key Research and Development Program of Shaanxi (Program No. 2020SF-405, 2020SF-425), the Fundamental Research Funds for the Central Universities CHD (Nos. 300102290302, 300102299502), and the Special Fund for Basic Scientific Research Business of Central Public Research Institutes (No. Y519015). The third author is grateful to Chang’an University Short-Term Study Abroad Program for Postgraduate Students (No. 0021/300203110004) and Chinese Scholarship Council (No. 201906560022) for providing an opportunity to be a visiting student at the University of Neuchatel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenke Wang.

Additional information

This article is part of the topical collection “Groundwater recharge and discharge in arid and semi-arid areas of China”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, W., Gong, C. et al. Effects of non-isothermal flow on groundwater recharge in a semi-arid region. Hydrogeol J 29, 541–549 (2021). https://doi.org/10.1007/s10040-020-02217-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02217-8

Keywords

Navigation