Skip to main content
Log in

Isolation and functional characterization of the mitogen-activated protein kinase kinase gene MAPKK1 from Panax notoginseng

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinase (MAPK) cascades are important signal transduction mechanisms that connect plant cellular and nuclear responses, which play key roles in plant development and stress responses. Here, the novel MAPK kinase (MAPKK) gene MAPKK1 was isolated from Panax notoginseng (Burk) F.H. Chen. Exogenous methyl jasmonate (MeJA), salicylic acid (SA), ethylene, and hydrogen peroxide treatments induced the transcription level of PnMAPKK1 in P. notoginseng roots. Additionally, PnMAPKK1 expression actively responded to Fusarium solani infection, a major causal agent of P. notoginseng root rot disease. The PnMAPKK1 gene was further fused with the green fluorescent protein gene in a plant expression vector and transformed into onion (Allium cepa) epidermal cells. Laser scanning confocal microscopy confirmed that the PnMAPKK1 protein localized in the cytoplasm. In addition, the plant overexpression vector pCAMBIA2300s-PnMAPKK1 was constructed and transformed into tobacco (Nicotiana tabacum L. cv. Xanthi). The PnMAPKK1 transgenic tobacco lines showed much stronger resistance levels to F. solani infection than the wild type. Moreover, the JA and SA contents in the PnMAPKK1 transgenic tobacco lines were significantly higher than those in wild type during F. solani infection. The up-regulation of several marker genes (PAL4, PR1c, WRKY1, Defensin, and LOC4) involved in JA and SA signaling was correlated with the overexpression of PnMAPKK1 in tobacco. Thus, the PnMAPKK1 gene is a positive regulator of defense responses to F. solani in P. notoginseng.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balcke, G. U., Handrick, V., Bergau, N., Fichtner, M., Henning, A., Stellmach, H., Tissier, A., Hause, B., & Frolov, A. (2012). An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Plant Methods, 8, 47.

    Article  CAS  Google Scholar 

  • Brader, G., Djamei, A., Teige, M., Palva, E. T., & Hirt, H. (2007). The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 20, 589–596.

    Article  CAS  Google Scholar 

  • Chang, Y., Yang, H., Ren, D., & Li, Y. (2017). Activation of ZmMKK10, a maize mitogen-activated protein kinase kinase, induces ethylene-dependent cell death. Plant Science, 264, 129–137.

    Article  CAS  Google Scholar 

  • Dóczi, R., Brader, G., Pettkó-Szandtner, A., Rajh, I., Djamei, A., Pitzschke, A., Teige, M., & Hirt, H. (2007). The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell, 19, 3266–3279.

    Article  Google Scholar 

  • Duan, L., Xiong, X., Hu, J., Liu, Y., Li, J., & Wang, J. (2017). Panax notoginseng saponins for treating coronary artery disease: A functional and mechanistic overview. Frontiers in Pharmacology, 8, 702.

    Article  Google Scholar 

  • Gao, M., Liu, J., Bi, D., Zhang, Z., Cheng, F., Chen, S., & Zhang, Y. (2008). MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Research, 18, 1190–1198.

    Article  CAS  Google Scholar 

  • Holsters, M., De Waele, D., Depicker, A., Messens, E., Van Montagu, M., & Schell, J. (1978). Transfection and transformation of Agrobacterium tumefaciens. MGG - Molecular and General Genetics, 163, 181–187.

    Article  CAS  Google Scholar 

  • Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., & Fraley, R. T. (1985). A simple and general method for transferring genes into plants. Science, 227, 1229–1231.

    Article  CAS  Google Scholar 

  • Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henry, Y., Champion, A., Kreis, M., Zhang, S., Hirt, H., Wilson, C., Heberle-Bors, E., Ellis, B. E., Morris, P. C., Innes, R. W., Ecker, J. R., Scheel, D., Klessig, D. F., Machida, Y., Mundy, J., Ohashi, Y., & Walker, J. C. (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 7, 301–308.

    Article  CAS  Google Scholar 

  • Jiang, M., & Chu, Z. (2018). Comparative analysis of plant MKK gene family reveals novel expansion mechanism of the members and sheds new light on functional conservation. BMC Genomics, 19, 407.

    Article  Google Scholar 

  • Kong, X., Pan, J., Zhang, D., Jiang, S., Cai, G., Wang, L., & Li, D. (2013). Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize. Biochemical and Biophysical Research Communications, 441, 964–969.

    Article  CAS  Google Scholar 

  • Kumar, K., & Sinha, A. K. (2013). Overexpression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice. Rice, 6, 25.

    Article  Google Scholar 

  • Lazar, A., Coll, A., Dobnik, D., Baebler, S., Bedina-Zavec, A., Zel, J., & Gruden, K. (2014). Involvement of potato (Solanum tuberosum L.) MKK6 in response to Potato virus Y. PLoS One, 9, e104553.

    Article  Google Scholar 

  • Li, H., Liu, D., He, H., Zhang, N., Ge, F., & Chen, C. (2014a). Molecular cloning of a 14-3-3 protein gene from Lilium regale Wilson and overexpression of this gene in tobacco increased resistance to pathogenic fungi. Scientia Horticulturae, 168, 9–16.

  • Li, Y., Zhang, L., Lu, W., Wang, X., Wu, C., Guo, X. (2014b). Overexpression of cotton GhMKK4 enhances disease susceptibility and affects abscisic acid, gibberellin and hydrogen peroxide signalling in transgenic Nicotiana benthamiana. Molecular Plant Pathology,15, 94–108.

  • Liang, W., Yang, B., Yu, B. J., Zhou, Z., Li, C., Jia, M., Sun, Y., Zhang, Y., Wu, F., Zhang, H., Wang, B., Deyholos, M. K., & Jiang, Y. Q. (2013). Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). BMC Genomics, 14, 392.

    Article  CAS  Google Scholar 

  • Liu, D., He, X., Li, W., Chen, C., & Ge, F. (2013). A β-1, 3-glucanase gene expressed in fruit of Pyrus pyrifolia enhances resistance to several pathogenic fungi in transgenic tobacco. European Journal of Plant Pathology, 5, 265–277.

    Article  Google Scholar 

  • Liu, Z., Shi, L., Liu, Y., Tang, Q., Shen, L., Yang, S., Cai, J., Yu, H., Wang, R., Wen, J., Lin, Y., Hu, J., Liu, C., Zhang, Y., Mou, S., & He, S. (2015). Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum. Frontiers in Plant Science, 6, 780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, J., Wang, X., Feng, L., Li, Y., & He, J. X. (2017). The mitogen-activated protein kinase kinase 9 (MKK9) modulates nitrogen acquisition and anthocyanin accumulation under nitrogenlimiting condition in Arabidopsis. Biochemical and Biophysical Research Communications, 487, 539–544.

    Article  CAS  Google Scholar 

  • Macedo, R., Sales, L. P., Yoshida, F., Silva-Abud, L. L., & Lobo, M. J. (2017). Potential worldwide distribution of Fusarium dry root rot in common beans based on the optimal environment for disease occurrence. PLoS One, 12, e0187770.

    Article  Google Scholar 

  • Melech-Bonfil, S., & Sessa, G. (2011). The SlMKK2 and SlMPK2 genes play a role in tomato disease resistance to Xanthomonas campestris pv. vesicatoria. Plant Signaling & Behavior, 6, 154–156.

    Article  CAS  Google Scholar 

  • Meng, X., & Zhang, S. (2013). MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology, 51, 245–266.

  • Meng, X., Wang, H., He, Y., Liu, Y., Walker, J. C., Torii, K. U., & Zhang, S. (2012). A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. Plant Cell, 24, 4948–4960.

    Article  CAS  Google Scholar 

  • Meng, J., Gao, H., Zhai, W., Shi, J., Zhang, M., Zhang, W., Jian, G., Zhang, M., & Qi, F. (2018). Subtle regulation of cotton resistance to Verticillium wilt mediated by MAPKK family members. Plant Science, 272, 235–242.

    Article  CAS  Google Scholar 

  • Qiu, J. L., Zhou, L., Yun, B. W., Nielsen, H. B., Fiil, B. K., Petersen, K., Mackinlay, J., Loake, G. J., Mundy, J., & Morris, P. C. (2008). Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiology, 148, 212–222.

    Article  CAS  Google Scholar 

  • Ren, D., Liu, Y., Yang, K. Y., Han, L., Mao, G., Glazebrook, J., & Zhang, S. (2008). A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences, 105, 5638–5643.

    Article  CAS  Google Scholar 

  • Rodriguez, M. C. S., Petersen, M., & Mundy, J. (2010). Mitogen-activated protein kinase signaling in plants. Annual Review of Plant Biology, 61, 621–649.

    Article  CAS  Google Scholar 

  • Takahashi, F., Yoshida, R., Ichimura, K., Mizoguchi, T., Seo, S., Yonezawa, M., Maruyama, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2007). The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell, 19, 805–818.

    Article  CAS  Google Scholar 

  • Wu, J., Wang, J., Pan, C., Guan, X., Wang, Y., Liu, S., He, Y., Chen, J., Chen, L., & Lu, G. (2014). Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response. PLoS One, 9, e103032.

    Article  Google Scholar 

  • Xu, J., & Zhang, S. (2015). Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends in Plant Science, 20, 56–64.

    Article  CAS  Google Scholar 

  • Zhang, T., Liu, Y., Yang, T., Zhang, L., Xu, S., Xue, L., & An, L. (2006). Diverse signals converge at MAPK cascades in plant. Plant Physiology and Biochemistry, 44, 274–283.

    Article  CAS  Google Scholar 

  • Zhang, X., Dai, Y., Xiong, Y., DeFraia, C., Li, J., Dong, X., & Mou, Z. (2007). Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant Journal, 52, 1066–1079.

    Article  CAS  Google Scholar 

  • Zhang, X., Xu, X., Yu, Y., Chen, C., Wang, J., Cai, C., & Guo, W. (2016). Integration analysis of MKK and MAPK family members highlights potential MAPK signaling modules in cotton. Scientific Reports, 6, 29781.

    Article  CAS  Google Scholar 

  • Zhang, X., Mi, X., Chen, C., Wang, H., & Guo, W. (2018). Identification on mitogen-activated protein kinase signaling cascades by integrating protein interaction with transcriptional profiling analysis in cotton. Scientific Reports, 8, 8178.

    Article  Google Scholar 

  • Zhou, S., Chen, M., Zhang, Y., Gao, Q., Noman, A., Wang, Q., Li, H., Chen, L., Zhou, P., Lu, J., & Lou, Y. (2019). OsMKK3, a stress-responsive protein kinase, positively regulates rice resistance to Nilaparvata lugens via phytohormone dynamics. International Journal of Molecular Sciences, 20, 3023.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by two grants received from the National Natural Sciences Foundation of China (81560610) and Yunnan Ten Thousand Talents Plan Young & EliteTalents Project, respectively. We thank Lesley Benyon, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diqiu Liu.

Ethics declarations

This research article has not been submitted elsewhere for publication, and this manuscript complies with the ethical rules applicable for this journal.

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

No human or animal participants were involved in this research.

Electronic supplementary material

Fig. S1

(PNG 329 kb)

ESM 1

(TIF 1770 kb)

ESM 2

(DOCX 16.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, L., Chen, R., Taif, S. et al. Isolation and functional characterization of the mitogen-activated protein kinase kinase gene MAPKK1 from Panax notoginseng. Eur J Plant Pathol 158, 1–13 (2020). https://doi.org/10.1007/s10658-020-01937-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-01937-7

Keywords

Navigation