Skip to main content

Advertisement

Log in

Trace elements adsorption by natural and chemically modified humic acids

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K2S2O8) modified humic acids (HAs) isolated from a lowland peat through batch experiments. The adsorption of the studied PTTEs on the natural HA was satisfactorily described by the Langmuir isotherm model with maximum monolayer adsorption capacities of 318.2, 286.5, 225.0 and 136.8 mmol/kg for Pb, Cu, Zn and Ni, respectively. A thorough characterization of the natural and modified HA using 13C nuclear magnetic resonance spectroscopy demonstrated that the chemical modification of natural HA with K2S2O8 led to an increase in the content of carboxyl groups, and ketone and quinoid fragments in the HA structure. Consequently, the modified HA absorbed 16.3, 14.2, 10.6 and 6.9% more Pb, Ni, Zn and Cu, respectively, than the original natural HA. The isotherm data modeling together with adsorbent characterization suggested that the adsorption of PTTEs was controlled mainly by chemisorption mechanisms where inner-sphere complexations of metal ions with HA functional groups took place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Babanin, V. F., Ermilov, S. S., Morozov, V. V., Orlov, D. S., & Falkov, I. G. (1983). Study of the interaction of humic acid with metal cations using electron paramagnetic resonance and magnetic measurements. Soviet Soil Science, 7, 115–120. (in Russian).

    Google Scholar 

  • Behrman, E. J. (2006). The Elbs and Boyland-Sims peroxydisulfate oxidations. Beilstein Journal of Organic Chemistry, 46, 22.

    Google Scholar 

  • Biester, H., Knorr, K.-H., Schellekens, J., Basler, A., & Hermanns, Y.-M. (2014). Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences, 11, 2691–2707.

    Article  CAS  Google Scholar 

  • Boguta, P., & Sokołowska, Z. (2016). Interactions of Zn(II) ions with humic acids isolated from various type of soils. Effect of pH, Zn concentrations and humic acids chemical properties. PLoS ONE, 11(4), 0153626. https://doi.org/10.1371/journal.pone.0153626.

    Article  CAS  Google Scholar 

  • Chukov, S. N. (2001). Structural and functional parameters of soil organic matter under anthropogenic conditions. St. Petersburg: Petersburg State University Publishing House, St. Petersburg. (in Russian).

    Google Scholar 

  • Datta, A., Sanyal, S. K., & Saha, S. (2001). A study of natural and synthetic humic acids and their complexing ability towards cadmium. Plant and Soil, 235, 115–125.

    Article  CAS  Google Scholar 

  • Förstner, U., & Wittmann, G. T. W. (2012). Metal pollution in the aquatic environment. Berlin: Springer.

    Google Scholar 

  • Ghabbour, E. A., & Davies, G. (2007). Humic substances: Structure, models and functions. London: Royal Society of Chemistry.

    Google Scholar 

  • Gjessing, E. T. (1976). Physical and chemical characteristics of aquatic humus. Ann Arbor: Ann Arbor Science.

    Google Scholar 

  • Griffith, S. M., & Schnitzer, M. (1976). The alkaline cupric oxide oxidation of humic and fulvic acids extracted from tropical volcanic soils. Soil Science, 122, 191–201.

    Article  CAS  Google Scholar 

  • Hatten, J., & Goñi, M. (2016). Cupric oxide (CuO) oxidation detects pyrogenic carbon in burnt organic matter and soils. PLoS ONE, 11(3), e0151957. https://doi.org/10.1371/journal.pone.0151957.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kalabin, G. A., Kanitskaya, L. V., & Kushnarev, D. F. (2000). Quantitative NMR spectroscopy of natural organic raw materials and products of its processing. Moscow: Chemistry. (in Russian).

    Google Scholar 

  • Lakatos, B., Tibai, T., & Meisel, J. (1977). EPR spectra of humic acids and their metal complexes. Geoderma, 19, 319–338.

    Article  CAS  Google Scholar 

  • Lebedeva, G. F., Yarkova, T. Y., Platonov, V. V., & Proskuryakov, V. A. (2005). Chemical modification of peat humic acids to increase their bioactivity. Russian Journal of Applied Chemistry, 78, 1360–1363.

    Article  CAS  Google Scholar 

  • Loffredo, E., & Senesi, N. (2006). Fate of anthropogenic organic pollutants in soils with emphasis on adsorption/desorption processes of endocrine disruptor compounds. Pure and Applied Chemistry, 78, 947–961.

    Article  CAS  Google Scholar 

  • Lowe, L. E. (1992). Studies on the nature of sulphur in peat humic acids from the Fraser river delta British Columbia. Science of The Total Environment, 113, 133–145.

    Article  CAS  Google Scholar 

  • Martin, F., & Gonzalez-Vila, F. J. (1984). Persulfate oxidation of humic acids extracted from three different soils. Soil Biology & Biochemistry, 16, 207–210.

    Article  CAS  Google Scholar 

  • Martin, F., Sáiz Jiménez, C., & González-Vila, F. J. (1982). The persulfate oxidation of a soil humic acid. Soil Science, 132, 200–203.

    Article  Google Scholar 

  • McBride, M. B. (1982). Cu2+ adsorption characteristics of aluminum hydroxide and oxyhydroxides. Clay and Clay Minerals, 30, 21–28.

    Article  CAS  Google Scholar 

  • Meneghel, R., Petit-Sarlotte, C., & Bloch, J. (1972). Sur la caracterisation et l'isolement des produits de degradation d'un acide humique apres oxydation peracetique. Bulletin de la Societé Chimique de France, 7, 2997–3001.

    Google Scholar 

  • Minkina, T. M., Mandzhieva, S. S., Sushkova, S. N., Pinskii, D. L., & Antonenko, E. M. (2011). Effect of the particle-size distribution on the adsorption of copper, lead, and zinc by chernozemic soils of Rostov oblast. Eurasian Soil Science., 18, 1193–1200.

    Article  Google Scholar 

  • Minkina, T. M., Soldatov, A. V., Nevidomskaya, D. G., Motuzova, G. V., Podkovyrina, Y u S, & Mandzhieva, S. S. (2016). New approaches to studying heavy metals in soils by X-ray absorption spectroscopy (XANES) and extractive fractionation. Geochem International, 54, 197–204.

    Article  CAS  Google Scholar 

  • Nguyen, M. T., Kryachko, E. S., & Vanquickenborne, L. G. (2003). General and theoretical aspects of phenols. In Z. Rappoport (Ed.), The chemistry of phenols (pp. 1–198). The Atrium: Wiley.

    Google Scholar 

  • Orlov, D. S. (1995). Humic substances of soils and general theory of humification. Rotterdam: CRC Press.

    Google Scholar 

  • Pinskii, D. L. (1997). Ion exchange processes in soils. Pushchino: ONTI PNC RAN. (in Russian).

    Google Scholar 

  • Perelomov, L. V., Perelomova, I. V., & Venevtseva, Y. L. (2016). The toxic effects of trace elements on male reproductive health. Human Physiology, 42(4), 454–462. https://doi.org/10.1134/S0362119716030130.

    Article  CAS  Google Scholar 

  • Perelomov, L., Sarkar, B., Sizova, O., Chilachavaa, K., Shvikin, A., Perelomova, I., et al. (2018). Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species. Ecotoxicology and Environmental Safety, 151, 178–183.

    Article  CAS  Google Scholar 

  • Perminova, I. V., & Hatfield, K. (2005). Remediation chemistry of humic substances: theory and implications for technology. In K. Hatfield, N. Hertkorn, & I. V. Perminova (Eds.), Use of humic substances to remediate polluted environments: from theory to practice. NATO Science Series IV: Earth and Environmental Sciences 52 (pp. 3–36). Dordrecht: Springer.

    Google Scholar 

  • Perminova, I. V., Kovalenko, A. N., Schmitt-Kopplin, Ph, Hatfield, K., Hertkorn, N., Belyaeva, E. Y., et al. (2005). Design of quinonoid-enriched humic materials with enhanced redox properties. Environmental Science and Technology, 39, 8518–8524.

    Article  CAS  Google Scholar 

  • Pinskii, D. L., Minkina, T. M., Bauer, T. V., Nevidomskaya, D. G., Mandzhieva, S. S., & Burachevskaya, M. V. (2018). Copper adsorption by chernozem soils and parent rocks in Southern Russia. Geochemistry International, 56, 266–275.

    Article  CAS  Google Scholar 

  • Pretsch, E., Buhlmann, Ph, & Badertscher, M. (2009). Structure determination of organic compounds. Tables of spectral data (p. 433). Berlin: Springer.

    Google Scholar 

  • Schnitzer, M., & Ortiz de Serra, M. L. (1973). The chemical degradation of a humic acid. Canadian Journal of Chemistry, 51, 1554–1566.

    Article  CAS  Google Scholar 

  • Sethna, S. M. (1951). The Elbs persulfate oxidation. Chemical Reviews, 49, 91–101.

    Article  CAS  Google Scholar 

  • Sharp, J. H. (1973). Total organic carbon in seawater. Comparison of measurements using persulfate oxidation and high temperature combustion. Marine Chemistry, 1, 211–229.

    Article  CAS  Google Scholar 

  • Sorokina, T.A. (2014) Preparation and use of bioavailable iron compounds stabilized by humic substances. Dissertation, Moscow State University, Moscow (in Russian).

  • Stevenson., F.J., 1982. Humus chemistry. Genesis, composition, reactions. Wiley, New York.

  • Tung, T. X., Xu, D., Zhang, Y., Zhou, Q., & Wu, Z. (2019). Removing humic acid from aqueous solution using titanium dioxide: A Review. Polish Journal of Environmental Studies., 28(2), 529–542. https://doi.org/10.15244/pjoes/85196.

    Article  CAS  Google Scholar 

  • Uliana, M. P., Vieira, Y. W., Donatoni, M. C., Corrêa, A. G., Brocksom, U., & Brocksom, T. J. (2008). Oxidation of mono-phenols to para-benzoquinones: A comparative study. Journal of the Brazilian Chemical Society, 19(8), 1484–1489. https://doi.org/10.1590/S0103-50532008000800007.

    Article  CAS  Google Scholar 

  • Valencia, S., Marín, J., & Restrepo, G. (2018). Photocatalytic degradation of humic acids with titanium dioxide embedded into polyethylene pellets to enhance the postrecovery of catalyst. Environmental Engineering Science. https://doi.org/10.1089/ees.2017.0091.

    Article  Google Scholar 

  • Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids., 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197.

    Article  CAS  Google Scholar 

  • Volkova, E.M., 2018. Bogs of the Central Russian Upland: the genesis, structural and functional features and environmental value. Dissertation, Komarov Botanical Institute of RAS, St-Petersburg (in Russian).

  • Yuthawong, V., Kasuga, I., Kurisu, F., & Furumai, H. (2019). Molecular-level changes in dissolved organic matter compositions in lake Inba water during KMnO4 oxidation: Assessment by orbitrap mass spectrometry. Journal of Water and Environment Technology., 17(1), 27–39. https://doi.org/10.2965/jwet.18-043.

    Article  Google Scholar 

  • Zhou, L., Yuan, L., Zhao, B., Li, Y., & Lin, Z. (2019). Structural characteristics of humic acids derived from Chinese weathered coal under different oxidizing conditions. PLoS ONE, 14(5), e0217469. https://doi.org/10.1371/journal.pone.0217469.

    Article  CAS  Google Scholar 

  • Zwolak, A., Sarzyńska, M., Szpyrka, E., & Stawarczyk, K. (2019). Sources of soil pollution by heavy metals and their accumulation in vegetables: A Review. Water, Air, and Soil pollution, 230, 164. https://doi.org/10.1007/s11270-019-4221-y.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Russian Foundation for Basic Research (Projects No. 18-04-00274 and 19-29-05265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Perelomov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perelomov, L., Sarkar, B., Pinsky, D. et al. Trace elements adsorption by natural and chemically modified humic acids. Environ Geochem Health 43, 127–138 (2021). https://doi.org/10.1007/s10653-020-00686-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00686-0

Keywords

Navigation