Skip to main content
Log in

Chebyshev–Gauss–Lobatto collocation method for variable-order time fractional generalized Hirota–Satsuma coupled KdV system

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, the Chebyshev–Gauss–Lobatto collocation method is developed for studying the variable-order (VO) time fractional model of the generalized Hirota–Satsuma coupled KdV system arising in interaction of long waves. To define this new system, the Atangana–Baleanu fractional operator is implemented. The operational matrix of VO fractional differentiation for the shifted Chebyshev polynomials is extracted and then, a collocation scheme is established to reduce the original VO fractional problem to a system of nonlinear algebraic equations. The validity of the presented method is investigated on two numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Samko SG (2013) Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn 71:653–662

    Article  MathSciNet  Google Scholar 

  2. Heydari MH, Avazzadeh Z, Yang Y, Cattani C (2020) A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations. Comput Appl Math 39:2

    Article  MathSciNet  Google Scholar 

  3. Hosseininia M, Heydari MH, Roohi R, Avazzadeh Z (2019) A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation. J Comput Phys 395:1–18

    Article  MathSciNet  Google Scholar 

  4. Roohi R, Heydari MH, Sun HG (2019) Numerical study of unsteady natural convection of variable-order fractional Jeffrey nanofluid over an oscillating plate in a porous medium involved with magnetic, chemical and heat absorption effects using Chebyshev cardinal functions. Eur Phys J Plus 134:535

    Article  Google Scholar 

  5. Roohi R, Heydari MH, Bavi O, Emdad H (2019) Chebyshev polynomials for generalized couette flow of fractional Jeffrey nanofluid subjected to several thermochemical effects. Eng Comput 2019:1–17. https://doi.org/10.1007/s00366-019-00843-9

    Article  Google Scholar 

  6. Hassani H, Avazzadeh Z, Tenreiro Machado J A (2019) Solving two-dimensional variable-order fractional optimal control problems with transcendental Bernstein series. J Comput Nonlinear Dyn 14(6):061001

    Article  Google Scholar 

  7. Mohammadi F, Hassani H (2019) Numerical solution of two-dimensional variable-order fractional optimal control problem by generalized polynomial basis. J Optim Theory Appl 10(2):536–555

    Article  MathSciNet  Google Scholar 

  8. Heydari MH, Avazzadeh Z (2020) A computational method for solving two-dimensional nonlinear variable-order fractional optimal control problems. Asian J Control 22(3):1112–1126

    Article  MathSciNet  Google Scholar 

  9. Heydari MH (2020) A computational method for solving two-dimensional nonlinear variable-order fractional optimal control problems. Appl Numer Math 153:164–178

    Article  MathSciNet  Google Scholar 

  10. Parsa Moghaddam B, Tenreiro Machado J A (2017) A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels. Fract Calc Appl Anal 20(4):1023

    Article  MathSciNet  Google Scholar 

  11. Zú niga Aguilar C J, Gómez-Aguilar J F, Escobar-Jiménez R F, Romero-Ugalde H M (2019) A novel method to solve variable-order fractional delay differential equations based in Lagrange interpolations. Chaos Solitons Fractals 126:266–282

    Article  MathSciNet  Google Scholar 

  12. Hosseininia M, Heydari MH, Avazzadeh Z (2020) Numerical study of the variable-order fractional version of the nonlinear fourth-order 2D diffusion-wave equation via 2D Chebyshev wavelets. Eng Comput 2020:1–10. https://doi.org/10.1007/s00366-020-00995-z

    Article  Google Scholar 

  13. Hosseininia M, Heydari MH (2019) Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel. Chaos, Solitons Fractals 127:400–407

    Article  MathSciNet  Google Scholar 

  14. Gómez-Aguilar J F, Atangana A (2019) Time-fractional variable-order telegraph equation involving operators with Mittag–Leffler kernel. J Electromagn Waves Appl 33(2):165–175

    Article  Google Scholar 

  15. Heydari MH, Avazzadeh Z (2020) Numerical study of non-singular variabl-order time fractional coupled Burgers’ equations by using the Hahn polynomials. Eng Comput. https://doi.org/10.1007/s00366-020-01036-5

  16. Hosseininia M, Heydari MH, Rouzegar J, Cattani C (2019) A meshless method to solve nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler kernel. Eng Comput 2019:1–13. https://doi.org/10.1007/s00366-019-00852-8

    Article  Google Scholar 

  17. El-Sayed AA, Agarwal P (2019) Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials. Math Methods Appl Sci 42(11):3978–3991

    Article  MathSciNet  Google Scholar 

  18. Abdelkawy MA, Lopes AM, Babatin MM (2020) Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order. Chaos, Solitons Fractals 134:109724

    Article  MathSciNet  Google Scholar 

  19. Hassani H, Tenreiro Machado J A, Avazzadeh Z, Naraghirad E (2020) Generalized shifted Chebyshev polynomials: solving a general class of nonlinear variable order fractional pde. Commun Nonlinear Sci Numer Simul 85:105229

    Article  MathSciNet  Google Scholar 

  20. Babaei A, Parsa Moghaddam B, Banihashemi S, Tenreiro Machado J A (2020) Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations. Commun Nonlinear Sci Numer Simul 82:104985

    Article  MathSciNet  Google Scholar 

  21. Heydari MH, Avazzadeh Z (2020) Orthonormal Bernstein polynomials for solving nonlinear variable-order time fractional fourth-order diffusion-wave equation with nonsingular fractional derivative. Math Methods Appl Sci. https://doi.org/10.1002/mma.6483

  22. Canuto C, Hussaini M, Quarteroni A, Zang T (1988) Spectral methods in fluid dynamics. Springer-Verlage, Berlin

    Book  Google Scholar 

  23. Shen J, Tang T, Wang LL (2011) Spectral methods: algorithms, analysis and applications. Springer series in computational mathematics. Springer, Heidelberg

    Book  Google Scholar 

  24. Heydari MH, Avazzadeh Z (2020) A Chebyshev–Gauss–Radau scheme for nonlinear hyperbolic system of first order. Appl Math Inf Sci Lett 8(2):535–544

    MathSciNet  Google Scholar 

  25. Wang L, Chen YM (2020) Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam. Chaos, Solitons Fractals 132:109585

    Article  MathSciNet  Google Scholar 

  26. Babaei A, Jafari H, Banihashemi S (2020) Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method. J Comput Appl Math 377:112908

    Article  MathSciNet  Google Scholar 

  27. Oloniiju SD, Goqo SP, Sibanda P (2020) A Chebyshev pseudo-spectral method for the multi-dimensional fractional Rayleigh problem for a generalized maxwell fluid with Robin boundary conditions. Appl Numer Math 152:253–266

    Article  MathSciNet  Google Scholar 

  28. Heydari MH, Atangana A, Avazzadeh Z (2019) Chebyshev polynomials for the numerical solution of fractal-fractional model of nonlinear Ginzburg–Landau equation. Eng Comput 2019:1–12. https://doi.org/10.1007/s00366-019-00889-9

    Article  Google Scholar 

  29. Habenom H, Suthar DL (2020) Numerical solution for the time-fractional Fokker–Planck equation via shifted Chebyshev polynomials of the fourth kind. Adv Differ Equ 2020:315

    Article  MathSciNet  Google Scholar 

  30. Ezz-Eldien SS, Wang Y, Abdelkawy MA, Zaky MA, Aldraiweesh AA, Machado JT (2020) Chebyshev spectral methods for multi-order fractional neutral pantograph equations. Nonlinear Dyn 2020:1–13. https://doi.org/10.1007/s11071-020-05728-x

    Article  Google Scholar 

  31. Kurt A, Rezazadeh H, Senol M, Neirameh A, Tasbozan O, Eslami M, Mirzazadeh M (2019) Two effective approaches for solving fractional generalized Hirota–Satsuma coupled KdV system arising in interaction of long waves. J Ocean Eng Sci 4:24–32

    Article  Google Scholar 

  32. Atangana A, Baleanu D (2016) New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Thermal Sci 20(2):763–769

    Article  Google Scholar 

  33. Hirota R, Satsuma J (1981) Soliton solutions of a coupled Korteweg-de Vries equation. Phys Lett A 85(8–9):407–408

    Article  MathSciNet  Google Scholar 

  34. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  35. Heydari MH (2020) Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative. Chaos, Solitons Fractals 130:109401

    Article  MathSciNet  Google Scholar 

  36. Atabakzadeh MH, Akrami MH, Erjaee GH (2013) Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations. Appl Math Model 37:8903–8911

    Article  MathSciNet  Google Scholar 

  37. Li M (2018) Three classes of fractional oscillators, symmetry-basel. Symmetry 10(2):91

    Google Scholar 

  38. Li M (2020) Multi-fractional generalized Cauchy process and its application to teletraffic. Phys A Stat Mech Appl 2020:123982. https://doi.org/10.1016/j.physa.2019.123982

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Avazzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, M.H., Avazzadeh, Z. Chebyshev–Gauss–Lobatto collocation method for variable-order time fractional generalized Hirota–Satsuma coupled KdV system. Engineering with Computers 38, 1835–1844 (2022). https://doi.org/10.1007/s00366-020-01125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01125-5

Keywords

Navigation