Skip to main content
Log in

Analysis and Optimization of an Adaptive Interpolation Algorithm for the Numerical Solution of a System of Ordinary Differential Equations with Interval Parameters

  • NUMERICAL METHODS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider an adaptive interpolation algorithm for numerical integration of systems of ordinary differential equations (ODEs) with interval parameters and initial conditions. At each time moment, a piecewise polynomial function of a prescribed degree is constructed in the course of algorithm operation that interpolates the dependence of the solution on particular values of interval uncertainties with a controlled accuracy. We study the question of computational costs of the algorithm. An analytic estimate is derived for the number of operations; it depends on the algorithm parameters, in particular, the degree of interpolation and the specific features of the ODE system being integrated. Using a number of representative examples of various dimension and containing a varying number of interval uncertainties, we show that there exists an optimum value of interpolation degree from the viewpoint of computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Vinokurov, V.A. and Sadovnichii, V.A., Studying a kinetic model of drug-induced effect of antioxidants of the class of quinones, Differ. Uravn., 2016, vol. 52, no. 4, p. 426.

    Google Scholar 

  2. Mozokhina, A.S. and Mukhin, S.I., Some exact solutions to the problem about flow of a liquid in a contracting elastic vessel, Mat. Model., 2019, vol. 31, no. 3, pp. 124–140.

    MathSciNet  MATH  Google Scholar 

  3. Eijgenraam, P., The Solution of Initial Value Problems Using Interval Arithmetic. Mathematical Centre Tracts no. 144 , Amsterdam: Stichting Math. Centrum, 1981.

    MATH  Google Scholar 

  4. Lohner, R.J., Enclosing the solutions of ordinary initial and boundary value problems, in Computer Arithmetic: Scientific Computation and Programming Languages,. 1987, pp. 255–286.

  5. Chernous’ko, F.L., Otsenivanie fazovykh sostoyanii dinamicheskikh sistem. Metod ellipsoidov (Estimation of Phase States of Dynamical Systems. Method of Ellipsoids), Moscow: Nauka, 1988.

    Google Scholar 

  6. Moore, R.E., Interval Analysis, New Jersey: Prentice-Hall, 1966.

    MATH  Google Scholar 

  7. Sharyi, S.P., Konechnomernyi interval’nyi analiz (Finite-Dimensional Interval Analysis), Novosibirsk: XYZ, 2019.

    Google Scholar 

  8. Makino, K. and Berz, M., Models and their applications, in Numerical Software Verification 2017: Conf. July 22–23, 2017, Heidelberg, Germany, 2017, pp. 3–13.

  9. Nataraj, P.S.V. and Sondur S., The extrapolated Taylor model, in Reliable Computing, July 2011, 2011, pp. 251–278.

  10. Rogalev, A.N., Guaranteed methods for solving systems of ordinary differential equations based on the transformation of symbolic formulas, Vychisl. Tekhnol., 2003, vol. 8, no. 5, pp. 102–116.

    MATH  Google Scholar 

  11. Morozov, A.Yu. and Reviznikov, D.L., Metody komp’yuternogo modelirovaniya dinamicheskikh sistem s interval’nymi parametrami (Methods for Computer-Aided Modeling of Dynamical Systems with Interval Parameters), Moscow: Mosk. Aviats. Inst., 2019.

    Google Scholar 

  12. Morozov, A.Yu. and Reviznikov, D.L., Modelling of dynamic systems with interval parameters on graphic processors, Program. Inzheneriya, 2019, vol. 10, no. 2, pp. 69–76.

    Article  Google Scholar 

  13. Evstigneev, N.M. and Ryabkov, O.I., Applicability of the interval Taylor model to the computational proof of existence of periodic trajectories in systems of ordinary differential equations, Differ. Equations, 2018, vol. 54, no. 4, pp. 525–538.

    Article  MathSciNet  MATH  Google Scholar 

  14. Evstigneev, N.M. and Ryabkov, O.I., Algorithms for constructing isolating sets of phase flows and computer-assisted proofs with the use of interval Taylor models, Differ. Equations, 2019, vol. 55, no. 9, pp. 1198–1217.

    Article  MathSciNet  MATH  Google Scholar 

  15. Berger, M.J. and Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 1989, vol. 82, no. 1, pp. 64–84.

    Article  MATH  Google Scholar 

  16. Brown, R.A., Building a balanced kd-tree in \(O(k^n\log n) \) time, J. Comput. Graphics Tech., 2015, vol. 4, no. 1, pp. 50–68.

    Google Scholar 

  17. Martynenko, S.I., Mnogosetochnaya tekhnologiya: teoriya i prilozheniya (Multigrid Technology: Theory and Applications), Moscow: Fizmatlit, 2015.

    Google Scholar 

  18. Morozov, A.Yu. and Reviznikov, D.L., Adaptive interpolation algorithm based on a kd-tree for numerical integration of systems of ordinary differential equations with interval initial conditions, Differ. Equations, 2018, vol. 54, no. 7, pp. 945–956.

    Article  MathSciNet  MATH  Google Scholar 

  19. Morozov, A.Yu., Reviznikov, D.L., and Gidaspov, V.Yu., Adaptive interpolation algorithm based on a kd-tree for the problems of chemical kinetics with interval parameters, Math. Model. Comput. Simul., 2019, vol. 11, no. 4, pp. 622–633.

    Article  MathSciNet  MATH  Google Scholar 

  20. Khoirudin and Shun-Liang, J., Gpu application in cuda memory, Adv. Comput. Int. J. (ACIJ), 2015, vol. 6, no. 2.

  21. Petrovskii, I.G., Lektsii po teorii obyknovennykh differentsial’nykh uravnenii (Lectures on the Theory of Ordinary Differential Equations), Moscow: Izd. Mosk. Gos. Univ., 1984.

    Google Scholar 

  22. Sauer, T. and Xu, Y., On multivariate Lagrange interpolation, Math. Comput., 1995, vol. 64, no. 211, pp. 1147–1170.

    Article  MathSciNet  MATH  Google Scholar 

  23. Arnol’d, V.I., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Moscow–Izhevsk: RKhD, 2000.

    Google Scholar 

  24. Tersoff, J., New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 1988, vol. 37, no. 12, pp. 6991–7000.

    Article  Google Scholar 

  25. Shoemake, K., Uniform random rotations, in Graphics Gems III, 1992, p. 124–132.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Morozov, A. A. Zhuravlev or D. L. Reviznikov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.Y., Zhuravlev, A.A. & Reviznikov, D.L. Analysis and Optimization of an Adaptive Interpolation Algorithm for the Numerical Solution of a System of Ordinary Differential Equations with Interval Parameters. Diff Equat 56, 935–949 (2020). https://doi.org/10.1134/S0012266120070125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266120070125

Navigation